We report significant improvements in the retrieval efficiency of a single excitation stored in an atomic ensemble and in the subsequent generation of strongly correlated pairs of photons. A 50% probability to transform the stored excitation into one photon in a well-defined spatio-temporal mode at the output of the ensemble is demonstrated. These improvements are illustrated by the generation of high-quality heralded single photons with a suppression of the two-photon component below 1% of the value for a coherent state. A broad characterization of our system is performed for different parameters in order to provide input for the future design of realistic quantum networks.
Long-lived storage of arbitrary transverse multimodes is important for establishing a high-channel-capacity quantum network. Most of the pioneering works focused on atomic diffusion as the dominant impact on the retrieved pattern in an atom-based memory. In this work, we demonstrate that the unsynchronized Larmor precession of atoms in the inhomogeneous magnetic field dominates the distortion of the pattern stored in a cold-atom-based memory. We find that this distortion effect can be eliminated by applying a strong uniform polarization magnetic field. By preparing atoms in magnetically insensitive states, the destructive interference between different spin-wave components is diminished, and the stored localized patterns are synchronized further in a single spin-wave component; then, an obvious enhancement in preserving patterns for a long time is obtained. The reported results are very promising for studying transverse multimode decoherence in storage and high-dimensional quantum networks in the future.
A critical requirement for diverse applications in Quantum Information Science is the capability to disseminate quantum resources over complex quantum networks. For example, the coherent distribution of entangled quantum states together with quantum memory to store these states can enable scalable architectures for quantum computation, communication, and metrology. As a significant step toward such possibilities, here we report observations of entanglement between two atomic ensembles located in distinct apparatuses on different tables. Quantum interference in the detection of a photon emitted by one of the samples projects the otherwise independent ensembles into an entangled state with one joint excitation stored remotely in 10^5 atoms at each site. After a programmable delay, we confirm entanglement by mapping the state of the atoms to optical fields and by measuring mutual coherences and photon statistics for these fields. We thereby determine a quantitative lower bound for the entanglement of the joint state of the ensembles. Our observations provide a new capability for the distribution and storage of entangled quantum states, including for scalable quantum communication networks .
Violations of a Bell inequality are reported for an experiment where one of two entangled qubits is stored in a collective atomic memory for a user-defined time delay. The atomic qubit is found to preserve the violation of a Bell inequality for storage times up to 21 microseconds, 700 times longer than the duration of the excitation pulse that creates the entanglement. To address the question of the security of entanglement-based cryptography implemented with this system, an investigation of the Bell violation as a function of the cross-correlation between the generated nonclassical fields is reported, with saturation of the violation close to the maximum value allowed by quantum mechanics.
We study the dynamics of a single excitation coherently shared amongst an ensemble of atoms and coupled to a one-dimensional wave guide. The coupling between the matter and the light field gives rise to collective phenomena such as superradiant states with an enhanced initial decay rate, but also to the coherent exchange of the excitation between the atoms. We find that the competition between the two phenomena provides a characteristic dynamics for the decay of the excitations, and remarkably exhibits an algebraic behavior, instead of the expected standard exponential one, for a large number of atoms. The analysis is first performed for a chiral waveguide, where the problem can be solved analytically, and then is extended to the bidirectional waveguide.
Hybrid matter-photon entanglement is the building block for quantum networks. It is very favorable if the entanglement can be prepared with a high probability. In this paper, we report the deterministic creation of entanglement between an atomic ensemble and a single photon by harnessing Rydberg blockade. We design a scheme that creates entanglement between a single photons temporal modes and the Rydberg levels that host a collective excitation, using a process of cyclical retrieving and patching. The hybrid entanglement is tested via retrieving the atomic excitation as a second photon and performing correlation measurements, which suggest an entanglement fidelity of 87.8%. Our source of matter-photon entanglement will enable the entangling of remote quantum memories with much higher efficiency.
Julien Laurat
,Hugues de Riedmatten
,Daniel Felinto
.
(2006)
.
"Efficient retrieval of a single excitation stored in an atomic ensemble"
.
Julien Laurat
هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا