Do you want to publish a course? Click here

Spatial entanglement of paired photons generated in cold atomic ensembles

118   0   0.0 ( 0 )
 Added by Clara I. Osorio
 Publication date 2008
  fields Physics
and research's language is English




Ask ChatGPT about the research

Cold atomic ensembles can mediate the generation of entanglement between pairs of photons. Photons with specific directions of propagation are detected, and the entanglement can reside in any of the degrees of freedom that describe the whole quantum state of the photons: polarization, spatial shape or frequency. We show that the direction of propagation of the generated photons determines the spatial quantum state of the photons and therefore, the amount of entanglement generated. When photons generated in different directions are combined, this spatial distinguishing information can degrade the quantum purity of the polarization or frequency entanglement.



rate research

Read More

Entanglement measures quantify nonclassical correlations present in a quantum system, but can be extremely difficult to calculate, even more so, when information on its state is limited. Here, we consider broad families of entanglement criteria that are based on variances of arbitrary operators and analytically derive the lower bounds these criteria provide for two relevant entanglement measures: the best separable approximation (BSA) and the generalized robustness (GR). This yields a practical method for quantifying entanglement in realistic experimental situations, in particular, when only few measurements of simple observables are available. As a concrete application of this method, we quantify bipartite and multipartite entanglement in spin-squeezed Bose-Einstein condensates of $sim 500$ atoms, by lower bounding the BSA and the GR only from measurements of first and second moments of the collective spin operator.
Transferring entangled states between photon pairs is essential for quantum communication technologies. Semiconductor quantum dots are the most promising candidate for generating polarization-entangled photons deterministically. Recent improvements in photonic quality and brightness now make them suited for complex quantum optical purposes in practical devices. Here we demonstrate for the first time swapping of entangled states between two pairs of photons emitted by a single quantum dot. A joint Bell measurement heralds the successful generation of the Bell state $Psi^+$ with a fidelity of up to $0.81 pm 0.04$. The states nonlocal nature is confirmed by violating the CHSH-Bell inequality. Our photon source is compatible with atom-based quantum memories, enabling implementation of hybrid quantum repeaters. This experiment thus is a major step forward for semiconductor based quantum communication technologies.
A critical requirement for diverse applications in Quantum Information Science is the capability to disseminate quantum resources over complex quantum networks. For example, the coherent distribution of entangled quantum states together with quantum memory to store these states can enable scalable architectures for quantum computation, communication, and metrology. As a significant step toward such possibilities, here we report observations of entanglement between two atomic ensembles located in distinct apparatuses on different tables. Quantum interference in the detection of a photon emitted by one of the samples projects the otherwise independent ensembles into an entangled state with one joint excitation stored remotely in 10^5 atoms at each site. After a programmable delay, we confirm entanglement by mapping the state of the atoms to optical fields and by measuring mutual coherences and photon statistics for these fields. We thereby determine a quantitative lower bound for the entanglement of the joint state of the ensembles. Our observations provide a new capability for the distribution and storage of entangled quantum states, including for scalable quantum communication networks .
We study the collective radiation properties of cold, trapped ensembles of atoms. We consider the high density regime with the mean interatomic distance being comparable to, or smaller than, the wavelength of the resonant optical radiation emitted by the atoms. We find that the emission rate of a photon from an excited atomic ensemble is strongly enhanced for an elongated cloud. We analyze collective single-excitation eigenstates of the atomic ensemble and find that the absorption/emission spectrum is broadened and shifted to lower frequencies as compared to the non-interacting (low density) or single atom spectrum. We also analyze the spatial and temporal profile of the emitted radiation. Finally, we explore how to efficiently excite the collective super-radiant states of the atomic ensemble from a long-lived storage state in order to implement matter-light interfaces for quantum computation and communication applications.
Quantum repeaters based on atomic ensemble quantum memories are promising candidates for achieving scalable distribution of entanglement over long distances. Recently, important experimental progress has been made towards their implementation. However, the entanglement rates and scalability of current approaches are limited by relatively low retrieval and single-photon detector efficiencies. We propose a scheme, which makes use of fluorescent detection of stored excitations to significantly increase the efficiency of connection and hence the rate. Practical performance and possible experimental realizations of the new protocol are discussed.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا