Do you want to publish a course? Click here

Coherent backscattering of light by atoms in the saturated regime

231   0   0.0 ( 0 )
 Added by Thomas Wellens
 Publication date 2004
  fields Physics
and research's language is English




Ask ChatGPT about the research

We present the first calculation of coherent backscattering with inelastic scattering by saturated atoms. We consider the scattering of a quasi-monochromatic laser pulse by two distant atoms in free space. By restricting ourselves to scattering of two photons, we employ a perturbative approach, valid up to second order in the incident laser intensity. The backscattering enhancement factor is found to be smaller than two (after excluding single scattering), indicating a loss of coherence between the doubly scattered light emitted by both atoms. Since the undetected photon carries information about the path of the detected photon, the coherence loss can be explained by a which-path argument, in analogy with a double-slit experiment.



rate research

Read More

75 - G. Labeyrie 1999
Light propagating in an optically thick sample experiences multiple scattering. It is now known that interferences alter this propagation, leading to an enhanced backscattering, a manifestation of weak localization of light in such diffuse samples. This phenomenon has been extensively studied with classical scatterers. In this letter we report the first experimental evidence for coherent backscattering of light in a laser-cooled gas of Rubidium atoms.
93 - G. Labeyrie 2000
Coherent backscattering (CBS) of light waves by a random medium is a signature of interference effects in multiple scattering. This effect has been studied in many systems ranging from white paint to biological tissues. Recently, we have observed CBS from a sample of laser-cooled atoms, a scattering medium with interesting new properties. In this paper we discuss various effects, which have to be taken into account for a quantitative study of coherent backscattering of light by cold atoms.
We present a generalization of the diagrammatic pump-probe approach to coherent backscattering (CBS) of intense laser light for atoms with degenerate energy levels. We employ this approach for a characterization of the double scattering signal from optically pumped atoms with the transition $J_grightarrow J_e=J_g+1$ in the helicity preserving polarization channel. We show that, in the saturation regime, the internal degeneracy becomes manifest for atoms with $J_ggeq 1$, leading to a faster decrease of the CBS enhancement factor with increasing saturation parameter than in the non-degenerate case.
351 - G. Labeyrie 2002
We study the shape of the coherent backscattering (CBS) cone obtained when resonant light illuminates a thick cloud of laser-cooled rubidium atoms in presence of a homogenous magnetic field. We observe new magnetic field-dependent anisotropies in the CBS signal. We show that the observed behavior is due to the modification of the atomic radiation pattern by the magnetic field (Hanle effect in the excited state).
Entangled coherent states are shown to emerge, with high fidelity, when mixing coherent and squeezed vacuum states of light on a beam-splitter. These maximally entangled states, where photons bunch at the exit of a beamsplitter, are measured experimentally by Fock-state projections. Entanglement is examined theoretically using a Bell-type nonlocality test and compared with ideal entangled coherent states. We experimentally show nearly perfect similarity with entangled coherent states for an optimal ratio of coherent and squeezed vacuum light. In our scheme, entangled coherent states are generated deterministically with small amplitudes, which could be beneficial, for example, in deterministic distribution of entanglement over long distances.
comments
Fetching comments Fetching comments
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا