Do you want to publish a course? Click here

Entangled coherent states by mixing squeezed vacuum and coherent light

200   0   0.0 ( 0 )
 Added by Yonatan Israel
 Publication date 2017
  fields Physics
and research's language is English




Ask ChatGPT about the research

Entangled coherent states are shown to emerge, with high fidelity, when mixing coherent and squeezed vacuum states of light on a beam-splitter. These maximally entangled states, where photons bunch at the exit of a beamsplitter, are measured experimentally by Fock-state projections. Entanglement is examined theoretically using a Bell-type nonlocality test and compared with ideal entangled coherent states. We experimentally show nearly perfect similarity with entangled coherent states for an optimal ratio of coherent and squeezed vacuum light. In our scheme, entangled coherent states are generated deterministically with small amplitudes, which could be beneficial, for example, in deterministic distribution of entanglement over long distances.



rate research

Read More

The interference between coherent and squeezed vacuum light can produce path entangled states with very high fidelities. We show that the phase sensitivity of the above interferometric scheme with parity detection saturates the quantum Cramer-Rao bound, which reaches the Heisenberg-limit when the coherent and squeezed vacuum light are mixed in roughly equal proportions. For the same interferometric scheme, we draw a detailed comparison between parity detection and a symmetric-logarithmic-derivative-based detection scheme suggested by Ono and Hofmann.
In this paper we treat coherent-squeezed states of Fock space once more and study some basic properties of them from a geometrical point of view. Since the set of coherent-squeezed states ${ket{alpha, beta} | alpha, beta in fukuso}$ makes a real 4-dimensional surface in the Fock space ${cal F}$ (which is of course not flat), we can calculate its metric. On the other hand, we know that coherent-squeezed states satisfy the minimal uncertainty of Heisenberg under some condition imposed on the parameter space ${alpha, beta}$, so that we can study the metric from the view point of uncertainty principle. Then we obtain a surprising simple form (at least to us). We also make a brief review on Holonomic Quantum Computation by use of a simple model based on nonlinear Kerr effect and coherent-squeezed operators.
Photon-number correlation measurements are performed on bright squeezed vacuum states using a standard Bell-test setup, and quantum correlations are observed for conjugate polarization-frequency modes. We further test the entanglement witnesses for these states and demonstrate the violation of the separability criteria, which infers that all the macroscopic Bell states, containing typically $10^6$ photons per pulse, are polarization entangled. The study also reveals the symmetry of macroscopic Bell states with respect to local polarization transformations.
Beam alignment is an important practical aspect of the application of squeezed states of light. Misalignments in the detection of squeezed light result in a reduction of the observable squeezing level. In the case of squeezed vacuum fields that contain only very few photons, special measures must be taken in order to sense and control the alignment of the essentially dark beam. The GEO600 gravitational wave detector employs a squeezed vacuum source to improve its detection sensitivity beyond the limits set by classical quantum shot noise. Here, we present our design and implementation of an alignment sensing and control scheme that ensures continuous optimal alignment of the squeezed vacuum field at GEO 600 on long time scales in the presence of free-swinging optics. This first demonstration of a squeezed light automatic alignment system will be of particular interest for future long-term applications of squeezed vacuum states of light.
Two path interferometry with coherent states and squeezed vacuum can achieve phase sensitivities close to the Heisenberg limit when the average photon number of the squeezed vacuum is close to the average photon number of the coherent light. Here, we investigate the phase sensitivity of such states in the presence of photon losses. It is shown that the Cramer-Rao bound of phase sensitivity can be achieved experimentally by using a weak local oscillator and photon counting in the output. The phase sensitivity is then given by the Fisher information F of the state. In the limit of high squeezing, the ratio (F-N)/N^2 of Fisher information above shot noise to the square of the average photon number N depends only on the average number of photons lost, n_loss, and the fraction of squeezed vacuum photons mu. For mu=1/2, the effect of losses is given by (F-N)/N^2=1/(1+2 n_loss). The possibility of increasing the robustness against losses by lowering the squeezing fraction mu is considered and an optimized result is derived. However, the improvements are rather small, with a maximal improvement by a factor of two at high losses.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا