Do you want to publish a course? Click here

Evolutionary game theory and population dynamics

101   0   0.0 ( 0 )
 Added by Jacek Miekisz
 Publication date 2007
  fields Biology Physics
and research's language is English
 Authors Jacek Miekisz




Ask ChatGPT about the research

Many socio-economic and biological processes can be modeled as systems of interacting individuals. The behaviour of such systems can be often described within game-theoretic models. In these lecture notes, we introduce fundamental concepts of evolutionary game theory and review basic properties of deterministic replicator dynamics and stochastic dynamics of finite populations. We discuss stability of equilibria in deterministic dynamics with migration, time-delay, and in stochastic dynamics of well-mixed populations and spatial games with local interactions. We analyze the dependence of the long-run behaviour of a population on various parameters such as the time delay, the noise level, and the size of the population.



rate research

Read More

198 - Angel Sanchez , Jose A. Cuesta , 2005
Human behavior is one of the main problems for evolution, as it is often the case that human actions are disadvantageous for the self and advantageous for other people. Behind this puzzle are our beliefs about rational behavior, based on game theory. Here we show that by going beyond the standard game-theoretical conventions, apparently altruistic behavior can be understood as self-interested. We discuss in detail an example related to the so called Ultimatum game and illustrate the appearance of altruistic behavior induced by fluctuations. In addition, we claim that in general settings, fluctuations play a very relevant role, and we support this claim by considering a completely different example, namely the Stag-Hunt game.
Evolutionary game dynamics is one of the most fruitful frameworks for studying evolution in different disciplines, from Biology to Economics. Within this context, the approach of choice for many researchers is the so-called replicator equation, that describes mathematically the idea that those individuals performing better have more offspring and thus their frequency in the population grows. While very many interesting results have been obtained with this equation in the three decades elapsed since it was first proposed, it is important to realize the limits of its applicability. One particularly relevant issue in this respect is that of non-mean-field effects, that may arise from temporal fluctuations or from spatial correlations, both neglected in the replicator equation. This review discusses these temporal and spatial effects focusing on the non-trivial modifications they induce when compared to the outcome of replicator dynamics. Alongside this question, the hypothesis of linearity and its relation to the choice of the rule for strategy update is also analyzed. The discussion is presented in terms of the emergence of cooperation, as one of the current key problems in Biology and in other disciplines.
Darwinian evolution can be modeled in general terms as a flow in the space of fitness (i.e. reproductive rate) distributions. In the diffusion approximation, Tsimring et al. have showed that this flow admits fitness wave solutions: Gaussian-shape fitness distributions moving towards higher fitness values at constant speed. Here we show more generally that evolving fitness distributions are attracted to a one-parameter family of distributions with a fixed parabolic relationship between skewness and kurtosis. Unlike fitness waves, this statistical pattern encompasses both positive and negative (a.k.a. purifying) selection and is not restricted to rapidly adapting populations. Moreover we find that the mean fitness of a population under the selection of pre-existing variation is a power-law function of time, as observed in microbiological evolution experiments but at variance with fitness wave theory. At the conceptual level, our results can be viewed as the resolution of the dynamic insufficiency of Fishers fundamental theorem of natural selection. Our predictions are in good agreement with numerical simulations.
We perform individual-based Monte Carlo simulations in a community consisting of two predator species competing for a single prey species, with the purpose of studying biodiversity stabilization in this simple model system. Predators are characterized with predation efficiency and death rates, to which Darwinian evolutionary adaptation is introduced. Competition for limited prey abundance drives the populations optimization with respect to predation efficiency and death rates. We study the influence of various ecological elements on the final state, finding that both indirect competition and evolutionary adaptation are insufficient to yield a stable ecosystem. However, stable three-species coexistence is observed when direct interaction between the two predator species is implemented.
332 - Da Zhou , Hong Qian 2011
Agent-based stochastic models for finite populations have recently received much attention in the game theory of evolutionary dynamics. Both the ultimate fixation and the pre-fixation transient behavior are important to a full understanding of the dynamics. In this paper, we study the transient dynamics of the well-mixed Moran process through constructing a landscape function. It is shown that the landscape playing a central theoretical device that integrates several lines of inquiries: the stable behavior of the replicator dynamics, the long-time fixation, and continuous diffusion approximation associated with asymptotically large population. Several issues relating to the transient dynamics are discussed: (i) multiple time scales phenomenon associated with intra- and inter-attractoral dynamics; (ii) discontinuous transition in stochastically stationary process akin to Maxwell construction in equilibrium statistical physics; and (iii) the dilemma diffusion approximation facing as a continuous approximation of the discrete evolutionary dynamics. It is found that rare events with exponentially small probabilities, corresponding to the uphill movements and barrier crossing in the landscape with multiple wells that are made possible by strong nonlinear dynamics, plays an important role in understanding the origin of the complexity in evolutionary, nonlinear biological systems.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا