Do you want to publish a course? Click here

Evolutionary game theory: Temporal and spatial effects beyond replicator dynamics

172   0   0.0 ( 0 )
 Added by Carlos P. Roca
 Publication date 2009
and research's language is English




Ask ChatGPT about the research

Evolutionary game dynamics is one of the most fruitful frameworks for studying evolution in different disciplines, from Biology to Economics. Within this context, the approach of choice for many researchers is the so-called replicator equation, that describes mathematically the idea that those individuals performing better have more offspring and thus their frequency in the population grows. While very many interesting results have been obtained with this equation in the three decades elapsed since it was first proposed, it is important to realize the limits of its applicability. One particularly relevant issue in this respect is that of non-mean-field effects, that may arise from temporal fluctuations or from spatial correlations, both neglected in the replicator equation. This review discusses these temporal and spatial effects focusing on the non-trivial modifications they induce when compared to the outcome of replicator dynamics. Alongside this question, the hypothesis of linearity and its relation to the choice of the rule for strategy update is also analyzed. The discussion is presented in terms of the emergence of cooperation, as one of the current key problems in Biology and in other disciplines.



rate research

Read More

100 - Jacek Miekisz 2007
Many socio-economic and biological processes can be modeled as systems of interacting individuals. The behaviour of such systems can be often described within game-theoretic models. In these lecture notes, we introduce fundamental concepts of evolutionary game theory and review basic properties of deterministic replicator dynamics and stochastic dynamics of finite populations. We discuss stability of equilibria in deterministic dynamics with migration, time-delay, and in stochastic dynamics of well-mixed populations and spatial games with local interactions. We analyze the dependence of the long-run behaviour of a population on various parameters such as the time delay, the noise level, and the size of the population.
We study a spatial, one-shot prisoners dilemma (PD) model in which selection operates on both an organisms behavioral strategy (cooperate or defect) and its choice of when to implement that strategy across a set of discrete time slots. Cooperators evolve to fixation regularly in the model when we add time slots to lattices and small-world networks, and their portion of the population grows, albeit slowly, when organisms interact in a scale-free network. This selection for cooperators occurs across a wide variety of time slots and it does so even when a crucial condition for the evolution of cooperation on graphs is violated--namely, when the ratio of benefits to costs in the PD does not exceed the number of spatially-adjacent organisms.
Punishment may deter antisocial behavior. Yet to punish is costly, and the costs often do not offset the gains that are due to elevated levels of cooperation. However, the effectiveness of punishment depends not only on how costly it is, but also on the circumstances defining the social dilemma. Using the snowdrift game as the basis, we have conducted a series of economic experiments to determine whether severe punishment is more effective than mild punishment. We have observed that severe punishment is not necessarily more effective, even if the cost of punishment is identical in both cases. The benefits of severe punishment become evident only under extremely adverse conditions, when to cooperate is highly improbable in the absence of sanctions. If cooperation is likely, mild punishment is not less effective and leads to higher average payoffs, and is thus the much preferred alternative. Presented results suggest that the positive effects of punishment stem not only from imposed fines, but may also have a psychological background. Small fines can do wonders in motivating us to chose cooperation over defection, but without the paralyzing effect that may be brought about by large fines. The later should be utilized only when absolutely necessary.
Spatial structure is known to have an impact on the evolution of cooperation, and so it has been intensively studied during recent years. Previous work has shown the relevance of some features, such as the synchronicity of the updating, the clustering of the network or the influence of the update rule. This has been done, however, for concrete settings with particular games, networks and update rules, with the consequence that some contradictions have arisen and a general understanding of these topics is missing in the broader context of the space of 2x2 games. To address this issue, we have performed a systematic and exhaustive simulation in the different degrees of freedom of the problem. In some cases, we generalize previous knowledge to the broader context of our study and explain the apparent contradictions. In other cases, however, our conclusions refute what seems to be established opinions in the field, as for example the robustness of the effect of spatial structure against changes in the update rule, or offer new insights into the subject, e.g. the relation between the intensity of selection and the asymmetry between the effects on games with mixed equilibria.
We present a new non-Archimedean model of evolutionary dynamics, in which the genomes are represented by p-adic numbers. In this model the genomes have a variable length, not necessarily bounded, in contrast with the classical models where the length is fixed. The time evolution of the concentration of a given genome is controlled by a p-adic evolution equation. This equation depends on a fitness function f and on mutation measure Q. By choosing a mutation measure of Gibbs type, and by using a p-adic version of the Maynard Smith Ansatz, we show the existence of threshold function M_{c}(f,Q), such that the long term survival of a genome requires that its length grows faster than M_{c}(f,Q). This implies that Eigens paradox does not occur if the complexity of genomes grows at the right pace. About twenty years ago, Scheuring and Poole, Jeffares, Penny proposed a hypothesis to explain Eigens paradox. Our mathematical model shows that this biological hypothesis is feasible, but it requires p-adic analysis instead of real analysis. More exactly, the Darwin-Eigen cycle proposed by Poole et al. takes place if the length of the genomes exceeds M_{c}(f,Q).
comments
Fetching comments Fetching comments
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا