Do you want to publish a course? Click here

Evolutionary dynamics and competition stabilize three-species predator-prey communities

83   0   0.0 ( 0 )
 Added by Ulrich Dobramysl
 Publication date 2017
  fields Biology Physics
and research's language is English




Ask ChatGPT about the research

We perform individual-based Monte Carlo simulations in a community consisting of two predator species competing for a single prey species, with the purpose of studying biodiversity stabilization in this simple model system. Predators are characterized with predation efficiency and death rates, to which Darwinian evolutionary adaptation is introduced. Competition for limited prey abundance drives the populations optimization with respect to predation efficiency and death rates. We study the influence of various ecological elements on the final state, finding that both indirect competition and evolutionary adaptation are insufficient to yield a stable ecosystem. However, stable three-species coexistence is observed when direct interaction between the two predator species is implemented.



rate research

Read More

We investigate the competing effects and relative importance of intrinsic demographic and environmental variability on the evolutionary dynamics of a stochastic two-species Lotka-Volterra model by means of Monte Carlo simulations on a two-dimensional lattice. Individuals are assigned inheritable predation efficiencies; quenched randomness in the spatially varying reaction rates serves as environmental noise. We find that environmental variability enhances the population densities of both predators and prey while demographic variability leads to essentially neutral optimization.
193 - Uwe C. Tauber 2011
It is well-established that including spatial structure and stochastic noise in models for predator-prey interactions invalidates the classical deterministic Lotka-Volterra picture of neutral population cycles. In contrast, stochastic models yield long-lived, but ultimately decaying erratic population oscillations, which can be understood through a resonant amplification mechanism for density fluctuations. In Monte Carlo simulations of spatial stochastic predator-prey systems, one observes striking complex spatio-temporal structures. These spreading activity fronts induce persistent correlations between predators and prey. In the presence of local particle density restrictions (finite prey carrying capacity), there exists an extinction threshold for the predator population. The accompanying continuous non-equilibrium phase transition is governed by the directed-percolation universality class. We employ field-theoretic methods based on the Doi-Peliti representation of the master equation for stochastic particle interaction models to (i) map the ensuing action in the vicinity of the absorbing state phase transition to Reggeon field theory, and (ii) to quantitatively address fluctuation-induced renormalizations of the population oscillation frequency, damping, and diffusion coefficients in the species coexistence phase.
We simulate an individual-based model that represents both the phenotype and genome of digital organisms with predator-prey interactions. We show how open-ended growth of complexity arises from the invariance of genetic evolution operators with respect to changes in the complexity, and that the dynamics which emerges is controlled by a non-equilibrium critical point. The mechanism is analogous to the development of the cascade in fluid turbulence.
Adaptive dynamics is a widely used framework for modeling long-term evolution of continuous phenotypes. It is based on invasion fitness functions, which determine selection gradients and the canonical equation of adaptive dynamics. Even though the derivation of the adaptive dynamics from a given invasion fitness function is general and model-independent, the derivation of the invasion fitness function itself requires specification of an underlying ecological model. Therefore, evolutionary insights gained from adaptive dynamics models are generally model-dependent. Logistic models for symmetric, frequency-dependent competition are widely used in this context. Such models have the property that the selection gradients derived from them are gradients of scalar functions, which reflects a certain gradient property of the corresponding invasion fitness function. We show that any adaptive dynamics model that is based on an invasion fitness functions with this gradient property can be transformed into a generalized symmetric competition model. This provides a precise delineation of the generality of results derived from competition models. Roughly speaking, to understand the adaptive dynamics of the class of models satisfying a certain gradient condition, one only needs a complete understanding of the adaptive dynamics of symmetric, frequency-dependent competition. We show how this result can be applied to number of basic issues in evolutionary theory.
This work deals with the effects of an apex predator on the cyclic competition among three distinct species that follow the rules of the rock-paper-scissors game. The investigation develops standard stochastic simulations but is motivated by a novel procedure which is explained in the work. We add the apex predator as the fourth species in the system that contains three species that evolve following the standard rules of migration, reproduction and predation, and study how the system evolves in this new environment, in comparison with the case in the absence of the apex predator. The results show that the apex predator engenders the tendency to spread uniformly in the lattice, contributing to destroy the spiral patterns, keeping biodiversity but diminishing the average size of the clusters of the species that compete cyclically.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا