No Arabic abstract
Electronic databases, from phone to emails logs, currently provide detailed records of human communication patterns, offering novel avenues to map and explore the structure of social and communication networks. Here we examine the communication patterns of millions of mobile phone users, allowing us to simultaneously study the local and the global structure of a society-wide communication network. We observe a coupling between interaction strengths and the networks local structure, with the counterintuitive consequence that social networks are robust to the removal of the strong ties, but fall apart following a phase transition if the weak ties are removed. We show that this coupling significantly slows the diffusion process, resulting in dynamic trapping of information in communities, and find that when it comes to information diffusion, weak and strong ties are both simultaneously ineffective.
Big data open up unprecedented opportunities to investigate complex systems including the society. In particular, communication data serve as major sources for computational social sciences but they have to be cleaned and filtered as they may contain spurious information due to recording errors as well as interactions, like commercial and marketing activities, not directly related to the social network. The network constructed from communication data can only be considered as a proxy for the network of social relationships. Here we apply a systematic method, based on multiple hypothesis testing, to statistically validate the links and then construct the corresponding Bonferroni network, generalized to the directed case. We study two large datasets of mobile phone records, one from Europe and the other from China. For both datasets we compare the raw data networks with the corresponding Bonferroni networks and point out significant differences in the structures and in the basic network measures. We show evidence that the Bonferroni network provides a better proxy for the network of social interactions than the original one. By using the filtered networks we investigated the statistics and temporal evolution of small directed 3-motifs and conclude that closed communication triads have a formation time-scale, which is quite fast and typically intraday. We also find that open communication triads preferentially evolve to other open triads with a higher fraction of reciprocated calls. These stylized facts were observed for both datasets.
We study on topological properties of global supply chain network in terms of degree distribution, hierarchical structure, and degree-degree correlation in the global supply chain network. The global supply chain data is constructed by collecting various company data from the web site of Standard & Poors Capital IQ platform in 2018. The in- and out-degree distributions are characterized by a power law with in-degree exponent = 2.42 and out-degree exponent = 2.11. The clustering coefficient decays as power law with an exponent = 0.46. The nodal degree-degree correlation indicates the absence of assortativity. The Bow-tie structure of GWCC reveals that the OUT component is the largest and it consists 41.1% of total firms. The GSCC component comprises 16.4% of total firms. We observe that the firms in the upstream or downstream sides are mostly located a few steps away from the GSCC. Furthermore, we uncover the community structure of the network and characterize them according to their location and industry classification. We observe that the largest community consists of consumer discretionary sector mainly based in the US. These firms belong to the OUT component in the bow-tie structure of the global supply chain network. Finally, we confirm the validity for propositions S1 (short path length), S2 (power-law degree distribution), S3 (high clustering coefficient), S4 (fit-gets-richer growth mechanism), S5 (truncation of power-law degree distribution), and S7 (community structure with overlapping boundaries) in the global supply chain network.
Mobile phone communication as digital service generates ever-increasing datasets of human communication actions, which in turn allow us to investigate the structure and evolution of social interactions and their networks. These datasets can be used to study the structuring of such egocentric networks with respect to the strength of the relationships by assuming direct dependence of the communication intensity on the strength of the social tie. Recently we have discovered that there are significant differences between the first and further best friends from the point of view of age and gender preferences. Here we introduce a control parameter $p_{rm max}$ based on the statistics of communication with the first and second best friend and use it to filter the data. We find that when $p_{rm max}$ is decreased the identification of the best friend becomes less ambiguous and the earlier observed effects get stronger, thus corroborating them.
To investigate the role of information flow in group formation, we introduce a model of communication and social navigation. We let agents gather information in an idealized network society, and demonstrate that heterogeneous groups can evolve without presuming that individuals have different interests. In our scenario, individuals access to global information is constrained by local communication with the nearest neighbors on a dynamic network. The result is reinforced interests among like-minded agents in modular networks; the flow of information works as a glue that keeps individuals together. The model explains group formation in terms of limited information access and highlights global broadcasting of information as a way to counterbalance this fragmentation. To illustrate how the information constraints imposed by the communication structure affects future development of real-world systems, we extrapolate dynamics from the topology of four social networks.
This paper introduces a model of self-organization between communication and topology in social networks, with a feedback between different communication habits and the topology. To study this feedback, we let agents communicate to build a perception of a network and use this information to create strategic links. We observe a narrow distribution of links when the communication is low and a system with a broad distribution of links when the communication is high. We also analyze the outcome of chatting, cheating, and lying, as strategies to get better access to information in the network. Chatting, although only adopted by a few agents, gives a global gain in the system. Contrary, a global loss is inevitable in a system with too many liars