Do you want to publish a course? Click here

Reinforced communication and social navigation generate groups in model networks

308   0   0.0 ( 0 )
 Added by Martin Rosvall
 Publication date 2009
  fields Physics
and research's language is English




Ask ChatGPT about the research

To investigate the role of information flow in group formation, we introduce a model of communication and social navigation. We let agents gather information in an idealized network society, and demonstrate that heterogeneous groups can evolve without presuming that individuals have different interests. In our scenario, individuals access to global information is constrained by local communication with the nearest neighbors on a dynamic network. The result is reinforced interests among like-minded agents in modular networks; the flow of information works as a glue that keeps individuals together. The model explains group formation in terms of limited information access and highlights global broadcasting of information as a way to counterbalance this fragmentation. To illustrate how the information constraints imposed by the communication structure affects future development of real-world systems, we extrapolate dynamics from the topology of four social networks.



rate research

Read More

In social systems, people communicate with each other and form groups based on their interests. The pattern of interactions, the network, and the ideas that flow on the network naturally evolve together. Researchers use simple models to capture the feedback between changing network patterns and ideas on the network, but little is understood about the role of past events in the feedback process. Here we introduce a simple agent-based model to study the coupling between peoples ideas and social networks, and better understand the role of history in dynamic social networks. We measure how information about ideas can be recovered from information about network structure and, the other way around, how information about network structure can be recovered from information about ideas. We find that it is in general easier to recover ideas from the network structure than vice versa.
89 - M. Rosvall , K. Sneppen 2005
This paper introduces a model of self-organization between communication and topology in social networks, with a feedback between different communication habits and the topology. To study this feedback, we let agents communicate to build a perception of a network and use this information to create strategic links. We observe a narrow distribution of links when the communication is low and a system with a broad distribution of links when the communication is high. We also analyze the outcome of chatting, cheating, and lying, as strategies to get better access to information in the network. Chatting, although only adopted by a few agents, gives a global gain in the system. Contrary, a global loss is inevitable in a system with too many liars
Internet communication channels, e.g., Facebook, Twitter, and email, are multiplex networks that facilitate interaction and information-sharing among individuals. During brief time periods users often use a single communication channel, but then communication channel alteration (CCA) occurs. This means that we must refine our understanding of the dynamics of social contagions. We propose a non-Markovian behavior spreading model in multiplex networks that takes into account the CCA mechanism, and we develop a generalized edge-based compartmental method to describe the spreading dynamics. Through extensive numerical simulations and theoretical analyses we find that the time delays induced by CCA slow the behavior spreading but do not affect the final adoption size. We also find that the CCA suppresses behavior spreading. On two coupled random regular networks, the adoption size exhibits hybrid growth, i.e., it grows first continuously and then discontinuously with the information transmission probability. CCA in ER-SF multiplex networks in which two subnetworks are ErdH{o}s-R{e}nyi (ER) and scale-free (SF) introduces a crossover from continuous to hybrid growth in adoption size versus information transmission probability. Our results extend our understanding of the role of CCA in spreading dynamics, and may elicit further research.
Social networks are organized into communities with dense internal connections, giving rise to high values of the clustering coefficient. In addition, these networks have been observed to be assortative, i.e. highly connected vertices tend to connect to other highly connected vertices, and have broad degree distributions. We present a model for an undirected growing network which reproduces these characteristics, with the aim of producing efficiently very large networks to be used as platforms for studying sociodynamic phenomena. The communities arise from a mixture of random attachment and implicit preferential attachment. The structural properties of the model are studied analytically and numerically, using the $k$-clique method for quantifying the communities.
145 - J. Xie , J. Emenheiser , M. Kirby 2011
Public opinion is often affected by the presence of committed groups of individuals dedicated to competing points of view. Using a model of pairwise social influence, we study how the presence of such groups within social networks affects the outcome and the speed of evolution of the overall opinion on the network. Earlier work indicated that a single committed group within a dense social network can cause the entire network to quickly adopt the groups opinion (in times scaling logarithmically with the network size), so long as the committed group constitutes more than about 10% of the population (with the findings being qualitatively similar for sparse networks as well). Here we study the more general case of opinion evolution when two groups committed to distinct, competing opinions $A$ and $B$, and constituting fractions $p_A$ and $p_B$ of the total population respectively, are present in the network. We show for stylized social networks (including ErdH{o}s-Renyi random graphs and Barabasi-Albert scale-free networks) that the phase diagram of this system in parameter space $(p_A,p_B)$ consists of two regions, one where two stable steady-states coexist, and the remaining where only a single stable steady-state exists. These two regions are separated by two fold-bifurcation (spinodal) lines which meet tangentially and terminate at a cusp (critical point). We provide further insights to the phase diagram and to the nature of the underlying phase transitions by investigating the model on infinite (mean-field limit), finite complete graphs and finite sparse networks. For the latter case, we also derive the scaling exponent associated with the exponential growth of switching times as a function of the distance from the critical point.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا