Do you want to publish a course? Click here

Demonstration of ultra-high-Q small mode volume toroid microcavities on a chip

66   0   0.0 ( 0 )
 Publication date 2004
  fields Physics
and research's language is English




Ask ChatGPT about the research

Optical microcavities confine light spatially and temporally and find application in a wide range of fundamental and applied studies. In many areas, the microcavity figure of merit is not only determined by photon lifetime (or the equivalent quality-factor, Q), but also by simultaneous achievement of small mode volume V . Here we demonstrate ultra-high Q-factor small mode volume toroid microcavities on-a-chip, which exhibit a Q/V factor of more than $10^{6}(lambda/n)^{-3}$. These values are the highest reported to date for any chip-based microcavity. A corresponding Purcell factor in excess of 200 000 and a cavity finesse of $2.8times10^{6}$ is achieved, demonstrating that toroid microcavities are promising candidates for studies of the Purcell effect, cavity QED or biochemical sensing



rate research

Read More

Long-lived, high-frequency phonons are valuable for applications ranging from optomechanics to emerging quantum systems. For scientific as well as technological impact, we seek high-performance oscillators that offer a path towards chip-scale integration. Confocal bulk acoustic wave resonators have demonstrated an immense potential to support long-lived phonon modes in crystalline media at cryogenic temperatures. So far, these devices have been macroscopic with cm-scale dimensions. However, as we push these oscillators to high frequencies, we have an opportunity to radically reduce the footprint as a basis for classical and emerging quantum technologies. In this paper, we present novel design principles and simple fabrication techniques to create high performance chip-scale confocal bulk acoustic wave resonators in a wide array of crystalline materials. We tailor the acoustic modes of such resonators to efficiently couple to light, permitting us to perform a non-invasive laser-based phonon spectroscopy. Using this technique, we demonstrate an acoustic $Q$-factor of 28 million (6.5 million) for chip-scale resonators operating at 12.7 GHz (37.8 GHz) in crystalline $z$-cut quartz ($x$-cut silicon) at cryogenic temperatures.
Scattering induced mode splitting in active microcavities is demonstrated. Below the lasing threshold, quality factor enhancement by optical gain allows resolving, in the wavelength-scanning transmission spectrum, the resonance dips of the split modes which otherwise would not be detected in a passive resonator. In the lasing regime, mode splitting manifests itself as two lasing modes with extremely narrow linewidths. Mixing of these laser modes in a detector leads to a heterodyne beat signal whose frequency corresponds to the amount of splitting. Lasing regime not only allows ultrahigh sensitivity for mode-splitting measurements but also provides an easily accessible scheme by eliminating the need for wavelength scanning around resonant modes. Mode splitting in active microcavities has immediate impact in enhancing the sensitivity of sub-wavelength scatterer detection and in studying light-matter interactions in strong coupling regime.
147 - D. OShea , C. Junge , S. Nickel 2011
Highly prolate-shaped whispering-gallery-mode bottle microresonators have recently attracted considerable attention due to their advantageous properties. We experimentally show that such resonators offer ultra-high quality factors, microscopic mode volumes, and near lossless in- and out-coupling of light using ultra-thin optical fibers. Additionally, bottle microresonators have a simple and customizable mode structure. This enables full tunability using mechanical strain and simultaneous coupling of two ultra-thin coupling fibers in an add-drop configuration. We present two applications based on these characteristics: In a cavity quantum electrodynamics experiment, we actively stabilize the frequency of the bottle microresonator to an atomic transition and operate it in an ultra-high vacuum environment in order to couple single laser-cooled atoms to the resonator mode. In a second experiment, we show that the bottle microresonator can be used as a low-loss, narrow-band add-drop filter. Using the Kerr effect of the silica resonator material, we furthermore demonstrate that this device can be used for single-wavelength all-optical signal processing.
We report an on-chip single mode microlaser with low-threshold fabricated on Erbium doped lithium niobate on insulator (LNOI). The single mode laser emission at 1550.5 nm wavelength is generated in a coupled photonic molecule, which is facilitated by Vernier effect when pumping the photonic molecule at 970 nm. A threshold pump power as low as 200 uW is demonstrated thanks to the high quality factor above 10^6. Moreover, the linewidth of the microlaser reaches 4 kHz, which is the best result in LNOI microlasers. Such single mode micro-laser lithographically fabricated on chip is highly in demand by photonic community.
Cavity-enhanced radiation-pressure coupling of optical and mechanical degrees of freedom gives rise to a range of optomechanical phenomena, in particular providing a route to the quantum regime of mesoscopic mechanical oscillators. A prime challenge in cavity optomechanics has however been to realize systems which simultaneously maximize optical finesse and mechanical quality. Here we demonstrate for the first time independent control over both mechanical and optical degree of freedom within one and the same on-chip resonator. The first direct observation of mechanical normal mode coupling in a micromechanical system allows for a quantitative understanding of mechanical dissipation. Subsequent optimization of the resonator geometry enables intrinsic material loss limited mechanical Q-factors, rivalling the best values reported in the high MHz frequency range, while simultaneously preserving the resonators ultra-high optical finesse. Besides manifesting a complete understanding of mechanical dissipation in microresonator based optomechanical systems, our results provide an ideal setting for cavity optomechanics.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا