Do you want to publish a course? Click here

On-chip ultra-narrow-linewidth single-mode microlaser on lithium niobate on insulator

367   0   0.0 ( 0 )
 Added by Jintian Lin
 Publication date 2021
  fields Physics
and research's language is English




Ask ChatGPT about the research

We report an on-chip single mode microlaser with low-threshold fabricated on Erbium doped lithium niobate on insulator (LNOI). The single mode laser emission at 1550.5 nm wavelength is generated in a coupled photonic molecule, which is facilitated by Vernier effect when pumping the photonic molecule at 970 nm. A threshold pump power as low as 200 uW is demonstrated thanks to the high quality factor above 10^6. Moreover, the linewidth of the microlaser reaches 4 kHz, which is the best result in LNOI microlasers. Such single mode micro-laser lithographically fabricated on chip is highly in demand by photonic community.



rate research

Read More

Erbium-doped lithium niobate on insulator (LNOI) laser plays an important role in the complete photonic integrated circuits (PICs). Here, we demonstrate an integrated tunable whisper galley single mode laser (WGSML) by making use of a pair of coupled microdisk and microring on LNOI. A 974 nm single-mode pump light can have an excellent resonance in the designed microdisk, which is beneficial to the whisper gallery mode (WGM) laser generation. The WGSML at 1560.40 nm with a maximum 31.4 dB side mode suppression ratio (SMSR) has been achieved. By regulating the temperature, WGSMLs output power increased and the central wavelength can be changed from 1560.30 nm to 1560.40 nm. Whats more, 1560.60 nm and 1565.00 nm WGSMLs have been achieved by changing the coupling gap width between microdisk and microring. We can also use the electro-optic effect of LNOI to obtain more accurate adjustable WGSMLs in further research.
197 - Zeyu Xiao , Kan Wu , Minglu Cai 2021
The erbium-doped Lithium niobate on insulator (Er:LNOI) platform has great promise in the application of telecommunication, microwave photonics, and quantum photonics due to its excellent electro-optic, piezo-electric, nonlinear nature as well as the gain characteristics in the telecommunication C-band. Here, we report a single-frequency Er:LNOI integrated laser based on dual-cavity structure. Facilitated by the Vernier effect and gain competition, the single-frequency laser can operate stably at 1531-nm wavelength with a 1484-nm pump laser. The output laser has a power of 0.31 uW, a linewidth of 1.2 MHz, and a side mode suppression ratio (SMSR) of 31 dB. Our work allows the direct integration of this laser source with existing LNOI components and paves the way for a fully integrated LNOI system.
297 - Tieying Li , Kan Wu , Minglu Cai 2021
Erbium-doped lithium niobate on insulator (Er:LNOI) is a promising platform for photonic integrated circuits as it adds gain to the LNOI system and enables on-chip lasers and amplifiers. A challenge for Er:LNOI laser is to increase its output power while maintaining single-frequency and single (-transverse)-mode operation. In this work, we demonstrate that single-frequency and single-mode operation can be achieved even in a single multi-mode Er:LNOI microring by introducing mode-dependent loss and gain competition. In a single microring with a free spectral range of 192 GHz, we have achieved single-mode lasing with an output power of 2.1 microwatt, a side-mode suppression of 35.5 dB, and a linewidth of 1.27 MHz.
94 - Qiang Luo , Chen Yang , Ru Zhang 2021
Lithium niobate on insulator (LNOI), regarded as an important candidate platform for optical integration due to its excellent nonlinear, electro-optic and other physical properties, has become a research hotspot. Light source, as an essential component for integrated optical system, is urgently needed. In this paper, we reported the realization of 1550-nm band on-chip LNOI microlasers based on erbium-doped LNOI ring cavities with loaded quality factors higher than one million, which were fabricated by using electron beam lithography and inductively coupled plasma reactive ion etching processes. These microlasers demonstrated a low pump threshold of ~20 {mu}W and stable performance under the pump of a 980-nm band continuous laser. Comb-like laser spectra spanning from 1510 nm to 1580 nm were observed in high pump power regime, which lays the foundation of the realization of pulsed laser and frequency combs on rare-earth ion doped LNOI platform. This work has effectively promoted the development of on-chip integrated active LNOI devices.
Lithium niobate on insulator (LNOI), as an emerging and promising optical integration platform, faces shortages of on-chip active devices including lasers and amplifiers. Here, we report the fabrication on-chip erbium-doped LNOI waveguide amplifiers based on electron beam lithography and inductively coupled plasma reactive ion etching. A net internal gain of ~30 dB/cm in communication band was achieved in the fabricated waveguide amplifiers under the pump of a 974-nm continuous laser. This work develops new active devices on LNOI and will promote the development of LNOI integrated photonics.
comments
Fetching comments Fetching comments
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا