Do you want to publish a course? Click here

Fredholm conditions on non-compact manifolds: theory and examples

146   0   0.0 ( 0 )
 Added by Yu Qiao
 Publication date 2017
  fields Physics
and research's language is English




Ask ChatGPT about the research

We give explicit Fredholm conditions for classes of pseudodifferential operators on suitable singular and non-compact spaces. In particular, we include a users guide to Fredholm conditions on particular classes of manifolds including asymptotically hyperbolic manifolds, asymptotically Euclidean (or conic) manifolds, and manifolds with poly-cylindrical ends. The reader interested in applications should be able read right away the results related to those examples, beginning with Section 5. Our general, theoretical results are that an operator adapted to the geometry is Fredholm if, and only if, it is elliptic and all its limit operators, in a sense to be made precise, are invertible. Central to our theoretical results is the concept of a Fredholm groupoid, which is the class of groupoids for which this characterization of the Fredholm condition is valid. We use the notions of exhaustive and strictly spectral families of representations to obtain a general characterization of Fredholm groupoids. In particular, we introduce the class of the so-called groupoids with Exels property as the groupoids for which the regular representations are exhaustive. We show that the class of stratified submersion groupoids has Exels property, where stratified submersion groupoids are defined by glueing fibered pull-backs of bundles of Lie groups. We prove that a stratified submersion groupoid is Fredholm whenever its isotropy groups are amenable. Many groupoids, and hence many pseudodifferential operators appearing in practice, fit into this framework. This fact is explored to yield Fredholm conditions not only in the above mentioned classes, but also on manifolds that are obtained by desingularization or by blow-up of singular sets.

rate research

Read More

Let M be a smooth Fredholm manifold modeled on a separable infinite-dimensional Euclidean space E with Riemannian metric g. Given an (augmented) Fredholm filtration F of M by finite-dimensional submanifolds (M_n), we associate to the triple (M, g, F) a non-commutative direct limit C*-algebra A(M, g, F) = lim A(M_n) that can play the role of the algebra of functions vanishing at infinity on the non-locally compact space M. The C*-algebra A(E), as constructed by Higson-Kasparov-Trout for their Bott periodicity theorem for infinite dimensional Euclidean spaces, is isomorphic to our construction when M = E. If M has an oriented Spin_q-structure (1 <= q <=infty), then the K-theory of this C*-algebra is the same (with dimension shift) as the topological K-theory of M defined by Mukherjea. Furthermore, there is a Poincare duality isomorphism of this K-theory of M with the compactly supported K-homology of M, just as in the finite-dimensional spin setting.
Suppose that a compact quantum group $clq$ acts faithfully on a smooth, compact, connected manifold $M$, i.e. has a $C^*$ (co)-action $alpha$ on $C(M)$, such that the action $alpha$ is isometric in the sense of cite{Goswami} for some Riemannian structure on $M$. We prove that $clq$ must be commutative as a $C^{ast}$ algebra i.e. $clqcong C(G)$ for some compact group $G$ acting smoothly on $M$. In particular, the quantum isometry group of $M$ (in the sense of cite{Goswami}) coincides with $C(ISO(M))$.
110 - Debashish Goswami 2018
Suppose that a compact quantum group ${mathcal Q}$ acts faithfully on a smooth, compact, connected manifold $M$, i.e. has a $C^{ast}$ (co)-action $alpha$ on $C(M)$, such that $alpha(C^infty(M)) subseteq C^infty(M, {mathcal Q})$ and the linear span of $alpha(C^infty(M))(1 otimes {mathcal Q})$ is dense in $C^infty(M, {mathcal Q})$ with respect to the Frechet topology. It was conjectured by the author quite a few years ago that ${mathcal Q}$ must be commutative as a $C^{ast}$ algebra i.e. ${mathcal Q} cong C(G)$ for some compact group $G$ acting smoothly on $M$. The goal of this paper is to prove the truth of this conjecture. A remarkable aspect of the proof is the use of probabilistic techniques involving Brownian stopping time.
We answer the question of when an invariant pseudodifferential operator is Fredholm on a fixed, given isotypical component. More precisely, let $Gamma$ be a compact group acting on a smooth, compact, manifold $M$ without boundary and let $P in psi^m(M; E_0, E_1)$ be a $Gamma$-invariant, classical, pseudodifferential operator acting between sections of two $Gamma$-equivariant vector bundles $E_0$ and $E_1$. Let $alpha$ be an irreducible representation of the group $Gamma$. Then $P$ induces by restriction a map $pi_alpha(P) : H^s(M; E_0)_alpha to H^{s-m}(M; E_1)_alpha$ between the $alpha$-isotypical components of the corresponding Sobolev spaces of sections. We study in this paper conditions on the map $pi_alpha(P)$ to be Fredholm. It turns out that the discrete and non-discrete cases are quite different. Additionally, the discrete abelian case, which provides some of the most interesting applications, presents some special features and is much easier than the general case. We thus concentrate in this paper on the case when $Gamma$ is finite abelian. We prove then that the restriction $pi_alpha(P)$ is Fredholm if, and only if, $P$ is $alpha$-elliptic, a condition defined in terms of the principal symbol of $P$. If $P$ is elliptic, then $P$ is also $alpha$-elliptic, but the converse is not true in general. However, if $Gamma$ acts freely on a dense open subset of $M$, then $P$ is $alpha$-elliptic for the given fixed $alpha$ if, and only if, it is elliptic. The proofs are based on the study of the structure of the algebra $psi^{m}(M; E)^Gamma$ of classical, $Gamma$-invariant pseudodifferential operators acting on sections of the vector bundle $E to M$ and of the structure of its restrictions to the isotypical components of $Gamma$. These structures are described in terms of the isotropy groups of the action of the group $Gamma$ on $E to M$.
We show that layer potential groupoids for conical domains constructed in an earlier paper (Carvalho-Qiao, Central European J. Math., 2013) are Fredholm groupoids, which enables us to deal with many analysis problems on singular spaces in a unified treatment. As an application, we obtain Fredholm criteria for operators on layer potential groupoids.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا