Do you want to publish a course? Click here

Graded $K$-theory and $K$-homology of relative Cuntz-Pimsner algebras and graph $C^*$-algebras

84   0   0.0 ( 0 )
 Added by Adam Sierakowski
 Publication date 2020
  fields
and research's language is English




Ask ChatGPT about the research

We establish exact sequences in $KK$-theory for graded relative Cuntz-Pimsner algebras associated to nondegenerate $C^*$-correspondences. We use this to calculate the graded $K$-theory and $K$-homology of relative Cuntz-Krieger algebras of directed graphs for gradings induced by ${0,1}$-valued labellings of their edge sets.



rate research

Read More

We develop methods for computing graded K-theory of C*-algebras as defined in terms of Kasparov theory. We establish grad
We initiate the study of real $C^*$-algebras associated to higher-rank graphs $Lambda$, with a focus on their $K$-theory. Following Kasparov and Evans, we identify a spectral sequence which computes the $mathcal{CR}$ $K$-theory of $C^*_{mathbb R} (Lambda, gamma)$ for any involution $gamma$ on $Lambda$, and show that the $E^2$ page of this spectral sequence can be straightforwardly computed from the combinatorial data of the $k$-graph $Lambda$ and the involution $gamma$. We provide a complete description of $K^{CR}(C^*_{mathbb R}(Lambda, gamma))$ for several examples of higher-rank graphs $Lambda$ with involution.
We introduce the notion of a homotopy of product systems, and show that the Cuntz-Nica-Pimsner algebras of homotopic product systems over N^k have isomorphic K-theory. As an application, we give a new proof that the K-theory of a 2-graph C*-algebra is independent of the factorisation rules, and we further show that the K-theory of any twisted k-graph C*-algebra is independent of the twisting 2-cocycle. We also explore applications to K-theory for the C*-algebras of single-vertex k-graphs, reducing the question of whether the $K$-theory is independent of the factorisation rules to a question about path-connectedness of the space of solutions to an equation of Yang-Baxter type.
101 - M. Eryuzlu 2020
We construct a functor that maps $C^*$-correspondences to their Cuntz-Pimsner algebras. The objects in our domain category are $C^*$-correspondences, and the morphisms are the isomorphism classes of $C^*$-correspondences satisfying certain conditions. As an application, we recover a well-known result of Muhly and Solel. In fact, we show that functoriality leads us to a more generalized result: strongly Morita equivalent $C^*$-correspondences have Morita equivalent Cuntz-Pimsner algebras.
122 - Sven Raum , Adam Skalski 2021
Exploiting the graph product structure and results concerning amalgamated free products of C*-algebras we provide an explicit computation of the K-theoretic invariants of right-angled Hecke C*-algebras, including concrete algebraic representants of a basis in K-theory. On the way, we show that these Hecke algebras are KK-equivalent with their undeformed counterparts and satisfy the UCT. Our results are applied to study the isomorphism problem for Hecke C*-algebras, highlighting the limits of K-theoretic classification, both for varying Coxeter type as well as for fixed Coxeter type.
comments
Fetching comments Fetching comments
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا