Do you want to publish a course? Click here

Backlund loop algebras for compact and non-compact nonlinear spin models in $(2+1)$ dimensions

233   0   0.0 ( 0 )
 Added by Marcella Palese
 Publication date 2004
  fields Physics
and research's language is English




Ask ChatGPT about the research

The Backlund problem is solved for both the compact and noncompa



rate research

Read More

We study three-point correlation functions of local operators in planar $mathcal{N}=4$ SYM at weak coupling using integrability. We consider correlation functions involving two scalar BPS operators and an operator with spin, in the so called SL(2) sector. At tree level we derive the corresponding structure constant for any such operator. We also conjecture its one loop correction. To check our proposals we analyze the conformal partial wave decomposition of known four-point correlation functions of BPS operators. In perturbation theory, we extract from this decomposition sums of structure constants involving all primaries of a given spin and twist. On the other hand, in our integrable setup these sum rules are computed by summing over all solutions to the Bethe equations. A perfect match is found between the two approaches.
131 - H. Falomir , F. Vega , J. Gamboa 2012
In this article we considered models of particles living in a three-dimensional space-time with a nonstandard noncommutativity induced by shifting canonical coordinates and momenta with generators of a unitary irreducible representation of the Lorentz group. The Hilbert space gets the structure of a direct product with the representation space, where we are able to construct operators which realize the algebra of Lorentz transformations. We study the modified Landau problem for both Schrodinger and Dirac particles, whose Hamiltonians are obtained through a kind of non-Abelian Bopps shift of the dynamical variables from the ones of the usual problem in the normal space. The spectrum of these models are considered in perturbation theory, both for small and large noncommutativity parameters. We find no constraint between the parameters referring to no-commutativity in coordinates and momenta but they rather play similar roles. Since the representation space of the unitary irreducible representations SL(2,R) can be realized in terms of spaces of square-integrable functions, we conclude that these models are equivalent to quantum mechanical models of particles living in a space with an additional compact dimension.
For the rational quantum Calogero systems of type $A_1{oplus}A_2$, $AD_3$ and $BC_3$, we explicitly present complete sets of independent conserved charges and their nonlinear algebras. Using intertwining (or shift) operators, we include the extra `odd charges appearing for integral couplings. Formulae for the energy eigenstates are used to tabulate the low-level wave functions.
We discuss compact (2+1)-dimensional Maxwell electrodynamics coupled to fermionic matter with N replica. For large enough N, the latter corresponds to an effective theory for the nearest neighbor SU(N) Heisenberg antiferromagnet, in which the fermions represent solitonic excitations known as spinons. Here we show that the spinons are deconfined for $N>N_c=36$, thus leading to an insulating state known as spin liquid. A previous analysis considerably underestimated the value of $N_c$. We show further that for $20<Nleq 36$ there can be either a confined or a deconfined phase, depending on the instanton density. For $Nleq 20$ only the confined phase exist. For the physically relevant value N=2 we argue that no paramagnetic phase can emerge, since chiral symmetry breaking would disrupt it. In such a case a spin liquid or any other nontrivial paramagnetic state (for instance, a valence-bond solid) is only possible if doping or frustrating interactions are included.
Dynamical localization of non-Abelian gauge fields in non-compact flat $D$ dimensions is worked out. The localization takes place via a field-dependent gauge kinetic term when a field condenses in a finite region of spacetime. Such a situation typically arises in the presence of topological solitons. We construct four-dimensional low-energy effective Lagrangian up to the quadratic order in a universal manner applicable to any spacetime dimensions. We devise an extension of the $R_xi$ gauge to separate physical and unphysical modes clearly. Out of the D-dimensional non-Abelian gauge fields, the physical massless modes reside only in the four-dimensional components, whereas they are absent in the extra-dimensional components. The universality of non-Abelian gauge charges holds due to the unbroken four-dimensional gauge invariance. We illustrate our methods with models in $D=5$ (domain walls), in $D=6$ (vortices), and in $D=7$.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا