Do you want to publish a course? Click here

Integrability, intertwiners and non-linear algebras in Calogero models

178   0   0.0 ( 0 )
 Added by Olaf Lechtenfeld
 Publication date 2021
  fields Physics
and research's language is English




Ask ChatGPT about the research

For the rational quantum Calogero systems of type $A_1{oplus}A_2$, $AD_3$ and $BC_3$, we explicitly present complete sets of independent conserved charges and their nonlinear algebras. Using intertwining (or shift) operators, we include the extra `odd charges appearing for integral couplings. Formulae for the energy eigenstates are used to tabulate the low-level wave functions.



rate research

Read More

We review some recents developments of the algebraic structures and spectral properties of non-Hermitian deformations of Calogero models. The behavior of such extensions is illustrated by the $A_2$ trigonometric and the $D_3$ angular Calogero models. Features like intertwining operators and conserved charges are discussed in terms of Dunkl operators. Hidden symmetries coming from the so-called algebraic integrability for integral values of the coupling are addressed together with a physical regularization of their action on the states by virtue of a $mathcal{PT}$-symmetry deformation.
We apply the dressing method on the Non Linear Sigma Model (NLSM), which describes the propagation of strings on $mathbb{R}times mathrm{S}^2$, for an arbitrary seed. We obtain a formal solution of the corresponding auxiliary system, which is expressed in terms of the solutions of the NLSM that have the same Pohlmeyer counterpart as the seed. Accordingly, we show that the dressing method can be applied without solving any differential equations. In this context a superposition principle emerges: The dressed solution is expressed as a non-linear superposition of the seed with solutions of the NLSM with the same Pohlmeyer counterpart as the seed.
We consider several classes of $sigma$-models (on groups and symmetric spaces, $eta$-models, $lambda$-models) with local couplings that may depend on the 2d coordinates, e.g. on time $tau$. We observe that (i) starting with a classically integrable 2d $sigma$-model, (ii) formally promoting its couplings $h_alpha$ to functions $h_alpha(tau)$ of 2d time, and (iii) demanding that the resulting time-dependent model also admits a Lax connection implies that $h_alpha(tau)$ must solve the 1-loop RG equations of the original theory with $tau$ interpreted as RG time. This provides a novel example of an integrability - RG flow connection. The existence of a Lax connection suggests that these time-dependent $sigma$-models may themselves be understood as integrable. We investigate this question by studying the possibility of constructing non-local and local conserved charges. Such $sigma$-models with $D$-dimensional target space and time-dependent couplings subject to the RG flow naturally appear in string theory upon fixing the light-cone gauge in a $(D+2)$-dimensional conformal $sigma$-model with a metric admitting a covariantly constant null Killing vector and a dilaton linear in the null coordinate.
It has been recently shown that every SCFT living on D3 branes at a toric Calabi-Yau singularity surprisingly also describes a complete integrable system. In this paper we use the Master Space as a bridge between the integrable system and the underlying field theory and we reinterpret the Poisson manifold of the integrable system in term of the geometry of the field theory moduli space.
We compute structure constants in N=4 SYM at one loop using Integrability. This requires having full control over the two loop eigenvectors of the dilatation operator for operators of arbitrary size. To achieve this, we develop an algebraic description called the Theta-morphism. In this approach we introduce impurities at each spin chain site, act with particular differential operators on the standard algebraic Bethe ansatz vectors and generate in this way higher loop eigenvectors. The final results for the structure constants take a surprisingly simple form. For some quantities we conjecture all loop generalizations. These are based on the tree level and one loop patterns together and also on some higher loop experiments involving simple operators.
comments
Fetching comments Fetching comments
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا