No Arabic abstract
We study three-point correlation functions of local operators in planar $mathcal{N}=4$ SYM at weak coupling using integrability. We consider correlation functions involving two scalar BPS operators and an operator with spin, in the so called SL(2) sector. At tree level we derive the corresponding structure constant for any such operator. We also conjecture its one loop correction. To check our proposals we analyze the conformal partial wave decomposition of known four-point correlation functions of BPS operators. In perturbation theory, we extract from this decomposition sums of structure constants involving all primaries of a given spin and twist. On the other hand, in our integrable setup these sum rules are computed by summing over all solutions to the Bethe equations. A perfect match is found between the two approaches.
Using anisotropic R-matrices associated with affine Lie algebras $hat g$ (specifically, $A_{2n}^{(2)}, A_{2n-1}^{(2)}, B_n^{(1)}, C_n^{(1)}, D_n^{(1)}$) and suitable corresponding K-matrices, we construct families of integrable open quantum spin chains of finite length, whose transfer matrices are invariant under the quantum group corresponding to removing one node from the Dynkin diagram of $hat g$. We show that these transfer matrices also have a duality symmetry (for the cases $C_n^{(1)}$ and $D_n^{(1)}$) and additional $Z_2$ symmetries that map complex representations to their conjugates (for the cases $A_{2n-1}^{(2)}, B_n^{(1)}, D_n^{(1)}$). A key simplification is achieved by working in a certain unitary gauge, in which only the unbroken symmetry generators appear. The proofs of these symmetries rely on some new properties of the R-matrices. We use these symmetries to explain the degeneracies of the transfer matrices.
In this article, we extend the work of arXiv:0901.4744 to a Bethe/Gauge correspondence between 2d (or resp. 3d) SO/Sp gauge theories and open XXX (resp. XXZ) spin chains with diagonal boundary conditions. The case of linear quiver gauge theories is also considered.
We compute structure constants in N=4 SYM at one loop using Integrability. This requires having full control over the two loop eigenvectors of the dilatation operator for operators of arbitrary size. To achieve this, we develop an algebraic description called the Theta-morphism. In this approach we introduce impurities at each spin chain site, act with particular differential operators on the standard algebraic Bethe ansatz vectors and generate in this way higher loop eigenvectors. The final results for the structure constants take a surprisingly simple form. For some quantities we conjecture all loop generalizations. These are based on the tree level and one loop patterns together and also on some higher loop experiments involving simple operators.
We compute three-point functions of single trace operators in planar N=4 SYM. We consider the limit where one of the operators is much smaller than the other two. We find a precise match between weak and strong coupling in the Frolov-Tseytlin classical limit for a very general class of classical solutions. To achieve this match we clarify the issue of back-reaction and identify precisely which three-point functions are captured by a classical computation.
The Backlund problem is solved for both the compact and noncompa