No Arabic abstract
In Section 1 we review various equivalent definitions of a vertex algebra V. The main novelty here is the definition in terms of an indefinite integral of the lambda-bracket. In Section 2 we construct, in the most general framework, the Zhu algebra Zhu_G V, an associative algebra which controls G-twisted representations of the vertex algebra V with a given Hamiltonian operator H. An important special case of this construction is the H-twisted Zhu algebra Zhu_H V. In Section 3 we review the theory of non-linear Lie conformal algebras (respectively non-linear Lie algebras). Their universal enveloping vertex algebras (resp. universal enveloping algebras) form an important class of freely generated vertex algebras (resp. PBW generated associative algebras). We also introduce the H-twisted Zhu non-linear Lie algebra Zhu_H R of a non-linear Lie conformal algebra R and we show that its universal enveloping algebra is isomorphic to the H-twisted Zhu algebra of the universal enveloping vertex algebra of R. After a discussion of the necessary cohomological material in Section 4, we review in Section 5 the construction and basic properties of affine and finite W-algebras, obtained by the method of quantum Hamiltonian reduction. Those are some of the most intensively studied examples of freely generated vertex algebras and PBW generated associative algebras. Applying the machinery developed in Sections 3 and 4, we then show that the H-twisted Zhu algebra of an affine W-algebra is isomorphic to the finite W-algebra, attached to the same data. In Section 6 we define the Zhu algebra of a Poisson vertex algebra, and we discuss quasiclassical limits.
We present a connection between W-algebras and Yangians, in the case of gl(N) algebras, as well as for twisted Yangians and/or super-Yangians. This connection allows to construct an R-matrix for the W-algebras, and to classify their finite-dimensional irreducible representations. We illustrate it in the framework of nonlinear Schroedinger equation in 1+1 dimension.
We study the problem of classification of triples ($mathfrak{g}, f, k$), where $mathfrak{g}$ is a simple Lie algebra, $f$ its nilpotent element and $k in CC$, for which the simple $W$-algebra $W_k (mathfrak{g}, f)$ is rational.
We describe a conjectural classification of Poisson vertex algebras of CFT type and of Poisson vertex algebras in one differential variable (= scalar Hamiltonian operators).
The focusing Nonlinear Schrodinger (NLS) equation is the simplest universal model describing the modulation instability (MI) of quasi monochromatic waves in weakly nonlinear media, and MI is considered the main physical mechanism for the appearence of anomalous (rogue) waves (AWs) in nature. In this paper we study, using the finite gap method, the NLS Cauchy problem for generic periodic initial perturbations of the unstable background solution of NLS (what we call the Cauchy problem of the AWs), in the case of a finite number $N$ of unstable modes. We show how the finite gap method adapts to this specific Cauchy problem through three basic simplifications, allowing one to construct the solution, at the leading and relevant order, in terms of elementary functions of the initial data. More precisely, we show that, at the leading order, i) the initial data generate a partition of the time axis into a sequence of finite intervals, ii) in each interval $I$ of the partition, only a subset of ${cal N}(I)le N$ unstable modes are visible, and iii) the NLS solution is approximated, for $tin I$, by the ${cal N}(I)$-soliton solution of Akhmediev type, describing the nonlinear interaction of these visible unstable modes, whose parameters are expressed in terms of the initial data through elementary functions. This result explains the relevance of the $m$-soliton solutions of Akhmediev type, with $mle N$, in the generic periodic Cauchy problem of the AWs, in the case of a finite number $N$ of unstable modes.
A connection between the finite ultradiscrete Toda lattice and the box-ball system is extended to the case where each box has own capacity and a carrier has a capacity parameter depending on time. In order to consider this connection, new carrier rules size limit for solitons and recovery of balls, and a concept expansion map are introduced. A particular solution to the extended system of a special case is also presented.