No Arabic abstract
We present a connection between W-algebras and Yangians, in the case of gl(N) algebras, as well as for twisted Yangians and/or super-Yangians. This connection allows to construct an R-matrix for the W-algebras, and to classify their finite-dimensional irreducible representations. We illustrate it in the framework of nonlinear Schroedinger equation in 1+1 dimension.
We study the problem of classification of triples ($mathfrak{g}, f, k$), where $mathfrak{g}$ is a simple Lie algebra, $f$ its nilpotent element and $k in CC$, for which the simple $W$-algebra $W_k (mathfrak{g}, f)$ is rational.
In Section 1 we review various equivalent definitions of a vertex algebra V. The main novelty here is the definition in terms of an indefinite integral of the lambda-bracket. In Section 2 we construct, in the most general framework, the Zhu algebra Zhu_G V, an associative algebra which controls G-twisted representations of the vertex algebra V with a given Hamiltonian operator H. An important special case of this construction is the H-twisted Zhu algebra Zhu_H V. In Section 3 we review the theory of non-linear Lie conformal algebras (respectively non-linear Lie algebras). Their universal enveloping vertex algebras (resp. universal enveloping algebras) form an important class of freely generated vertex algebras (resp. PBW generated associative algebras). We also introduce the H-twisted Zhu non-linear Lie algebra Zhu_H R of a non-linear Lie conformal algebra R and we show that its universal enveloping algebra is isomorphic to the H-twisted Zhu algebra of the universal enveloping vertex algebra of R. After a discussion of the necessary cohomological material in Section 4, we review in Section 5 the construction and basic properties of affine and finite W-algebras, obtained by the method of quantum Hamiltonian reduction. Those are some of the most intensively studied examples of freely generated vertex algebras and PBW generated associative algebras. Applying the machinery developed in Sections 3 and 4, we then show that the H-twisted Zhu algebra of an affine W-algebra is isomorphic to the finite W-algebra, attached to the same data. In Section 6 we define the Zhu algebra of a Poisson vertex algebra, and we discuss quasiclassical limits.
We construct algebra homomorphisms from affine Yangians to the current algebras of rectangular $W$-algebras both in type A. The construction is given via the coproduct and the evaluation map for the affine Yangians. As a consequence, we show that parabolic inductions for representations of the rectangular $W$-algebras can be regarded as tensor product representations of the affine Yangians under the homomorphisms. The same method is applicable also to the super setting.
We construct the general solution of a class of Fuchsian systems of rank $N$ as well as the associated isomonodromic tau functions in terms of semi-degenerate conformal blocks of $W_N$-algebra with central charge $c=N-1$. The simplest example is given by the tau function of the Fuji-Suzuki-Tsuda system, expressed as a Fourier transform of the 4-point conformal block with respect to intermediate weight. Along the way, we generalize the result of Bowcock and Watts on the minimal set of matrix elements of vertex operators of the $W_N$-algebra for generic central charge and prove several properties of semi-degenerate vertex operators and conformal blocks for $c=N-1$.
The Minkowski spacetime quantum Clifford algebra structure associated with the conformal group and the Clifford-Hopf alternative k-deformed quantum Poincare algebra is investigated in the Atiyah-Bott-Shapiro mod 8 theorem context. The resulting algebra is equivalent to the deformed anti-de Sitter algebra U_q(so(3,2)), when the associated Clifford-Hopf algebra is taken into account, together with the associated quantum Clifford algebra and a (not braided) deformation of the periodicity Atiyah-Bott-Shapiro theorem.