Do you want to publish a course? Click here

On classification of Poisson vertex algebras

284   0   0.0 ( 0 )
 Added by Victor Kac
 Publication date 2010
  fields Physics
and research's language is English




Ask ChatGPT about the research

We describe a conjectural classification of Poisson vertex algebras of CFT type and of Poisson vertex algebras in one differential variable (= scalar Hamiltonian operators).



rate research

Read More

119 - Victor Kac 2015
These lectures were given in Session 1: Vertex algebras, W-algebras, and applications of INdAM Intensive research period Perspectives in Lie Theory at the Centro di Ricerca Matematica Ennio De Giorgi, Pisa, Italy, December 9, 2014 -- February 28, 2015.
110 - W. Galleas 2015
This letter is concerned with the analysis of the six-vertex model with domain-wall boundaries in terms of partial differential equations (PDEs). The models partition function is shown to obey a system of PDEs resembling the celebrated Knizhnik-Zamolodchikov equation. The analysis of our PDEs naturally produces a family of novel determinant representations for the models partition function.
In Section 1 we review various equivalent definitions of a vertex algebra V. The main novelty here is the definition in terms of an indefinite integral of the lambda-bracket. In Section 2 we construct, in the most general framework, the Zhu algebra Zhu_G V, an associative algebra which controls G-twisted representations of the vertex algebra V with a given Hamiltonian operator H. An important special case of this construction is the H-twisted Zhu algebra Zhu_H V. In Section 3 we review the theory of non-linear Lie conformal algebras (respectively non-linear Lie algebras). Their universal enveloping vertex algebras (resp. universal enveloping algebras) form an important class of freely generated vertex algebras (resp. PBW generated associative algebras). We also introduce the H-twisted Zhu non-linear Lie algebra Zhu_H R of a non-linear Lie conformal algebra R and we show that its universal enveloping algebra is isomorphic to the H-twisted Zhu algebra of the universal enveloping vertex algebra of R. After a discussion of the necessary cohomological material in Section 4, we review in Section 5 the construction and basic properties of affine and finite W-algebras, obtained by the method of quantum Hamiltonian reduction. Those are some of the most intensively studied examples of freely generated vertex algebras and PBW generated associative algebras. Applying the machinery developed in Sections 3 and 4, we then show that the H-twisted Zhu algebra of an affine W-algebra is isomorphic to the finite W-algebra, attached to the same data. In Section 6 we define the Zhu algebra of a Poisson vertex algebra, and we discuss quasiclassical limits.
60 - W. Galleas 2018
In this work we elaborate on a previous result relating the partition function of the six-vertex model with domain-wall boundary conditions to eigenvalues of a transfer matrix. More precisely, we express the aforementioned partition function as a determinant of a matrix with entries being eigenvalues of the anti-periodic six-vertex models transfer matrix.
178 - L. Feher 2021
We introduce a bi-Hamiltonian hierarchy on the cotangent bundle of the real Lie group ${mathrm GL}(n,{mathbb{C}})$, and study its Poisson reduction with respect to the action of the product group ${{mathrm U}(n)} times {{mathrm U}(n)}$ arising from left- and right-multiplications. One of the pertinent Poisson structures is the canonical one, while the other is suitably transferred from the real Heisenberg double of ${mathrm GL}(n,{mathbb{C}})$. When taking the quotient of $T^*{mathrm GL}(n,{mathbb{C}})$ we focus on the dense open subset of ${mathrm GL}(n,{mathbb{C}})$ whose elements have pairwise distinct singular values. We develop a convenient description of the Poisson algebras of the ${{mathrm U}(n)} times {{mathrm U}(n)}$ invariant functions, and show that one of the Hamiltonians of the reduced bi-Hamiltonian hierarchy yields a hyperbolic Sutherland model coupled to two ${mathfrak u}(n)^*$-valued spins. Thus we obtain a new bi-Hamiltonian interpretation of this model, which represents a special case of Sutherland models coupled to two spins obtained earlier from reductions of cotangent bundles of reductive Lie groups equipped with their canonical Poisson structure. Upon setting one of the spins to zero, we recover the bi-Hamiltonian structure of the standard hyperbolic spin Sutherland model that was derived recently by a different method.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا