Do you want to publish a course? Click here

The finite gap method and the periodic NLS Cauchy problem of the anomalous waves, for a finite number of unstable modes

114   0   0.0 ( 0 )
 Added by Piotr G. Grinevich
 Publication date 2018
  fields Physics
and research's language is English




Ask ChatGPT about the research

The focusing Nonlinear Schrodinger (NLS) equation is the simplest universal model describing the modulation instability (MI) of quasi monochromatic waves in weakly nonlinear media, and MI is considered the main physical mechanism for the appearence of anomalous (rogue) waves (AWs) in nature. In this paper we study, using the finite gap method, the NLS Cauchy problem for generic periodic initial perturbations of the unstable background solution of NLS (what we call the Cauchy problem of the AWs), in the case of a finite number $N$ of unstable modes. We show how the finite gap method adapts to this specific Cauchy problem through three basic simplifications, allowing one to construct the solution, at the leading and relevant order, in terms of elementary functions of the initial data. More precisely, we show that, at the leading order, i) the initial data generate a partition of the time axis into a sequence of finite intervals, ii) in each interval $I$ of the partition, only a subset of ${cal N}(I)le N$ unstable modes are visible, and iii) the NLS solution is approximated, for $tin I$, by the ${cal N}(I)$-soliton solution of Akhmediev type, describing the nonlinear interaction of these visible unstable modes, whose parameters are expressed in terms of the initial data through elementary functions. This result explains the relevance of the $m$-soliton solutions of Akhmediev type, with $mle N$, in the generic periodic Cauchy problem of the AWs, in the case of a finite number $N$ of unstable modes.



rate research

Read More

238 - Kazuki Maeda 2011
A connection between the finite ultradiscrete Toda lattice and the box-ball system is extended to the case where each box has own capacity and a carrier has a capacity parameter depending on time. In order to consider this connection, new carrier rules size limit for solitons and recovery of balls, and a concept expansion map are introduced. A particular solution to the extended system of a special case is also presented.
We introduce a new class of two(multi)-matrix models of positive Hermitean matrices coupled in a chain; the coupling is related to the Cauchy kernel and differs from the exponential coupling more commonly used in similar models. The correlation functions are expressed entirely in terms of certain biorthogonal polynomials and solutions of appropriate Riemann-Hilbert problems, thus paving the way to a steepest descent analysis and universality results. The interpretation of the formal expansion of the partition function in terms of multicolored ribbon-graphs is provided and a connection to the O(1) model. A steepest descent analysis of the partition function reveals that the model is related to a trigonal curve (three-sheeted covering of the plane) much in the same way as the Hermitean matrix model is related to a hyperelliptic curve.
In the present manuscript we consider the Boltzmann equation that models a polyatomic gas by introducing one additional continuous variable, referred to as microscopic internal energy. We establish existence and uniqueness theory in the space homogeneous setting for the full non-linear case, under an extended Grad assumption on transition probability rate, that comprises hard potentials for both the relative speed and internal energy with the rate in the interval $(0,2]$, which is multiplied by an integrable angular part and integrable partition functions. The Cauchy problem is resolved by means of an abstract ODE theory in Banach spaces, for an initial data with finite and strictly positive gas mass and energy, finite momentum, and additionally finite $k_*$ polynomial moment, with $k_*$ depending on the rate of the transition probability and the structure of a polyatomic molecule or its internal degrees of freedom. Moreover, we prove that polynomially and exponentially weighted Banach space norms associated to the solution are both generated and propagated uniformly in time.
In Section 1 we review various equivalent definitions of a vertex algebra V. The main novelty here is the definition in terms of an indefinite integral of the lambda-bracket. In Section 2 we construct, in the most general framework, the Zhu algebra Zhu_G V, an associative algebra which controls G-twisted representations of the vertex algebra V with a given Hamiltonian operator H. An important special case of this construction is the H-twisted Zhu algebra Zhu_H V. In Section 3 we review the theory of non-linear Lie conformal algebras (respectively non-linear Lie algebras). Their universal enveloping vertex algebras (resp. universal enveloping algebras) form an important class of freely generated vertex algebras (resp. PBW generated associative algebras). We also introduce the H-twisted Zhu non-linear Lie algebra Zhu_H R of a non-linear Lie conformal algebra R and we show that its universal enveloping algebra is isomorphic to the H-twisted Zhu algebra of the universal enveloping vertex algebra of R. After a discussion of the necessary cohomological material in Section 4, we review in Section 5 the construction and basic properties of affine and finite W-algebras, obtained by the method of quantum Hamiltonian reduction. Those are some of the most intensively studied examples of freely generated vertex algebras and PBW generated associative algebras. Applying the machinery developed in Sections 3 and 4, we then show that the H-twisted Zhu algebra of an affine W-algebra is isomorphic to the finite W-algebra, attached to the same data. In Section 6 we define the Zhu algebra of a Poisson vertex algebra, and we discuss quasiclassical limits.
For a stationary and axisymmetric spacetime, the vacuum Einstein field equations reduce to a single nonlinear PDE in two dimensions called the Ernst equation. By solving this equation with a {it Dirichlet} boundary condition imposed along the disk, Neugebauer and Meinel in the 1990s famously derived an explicit expression for the spacetime metric corresponding to the Bardeen-Wagoner uniformly rotating disk of dust. In this paper, we consider a similar boundary value problem for a rotating disk in which a {it Neumann} boundary condition is imposed along the disk instead of a Dirichlet condition. Using the integrable structure of the Ernst equation, we are able to reduce the problem to a Riemann-Hilbert problem on a genus one Riemann surface. By solving this Riemann-Hilbert problem in terms of theta functions, we obtain an explicit expression for the Ernst potential. Finally, a Riemann surface degeneration argument leads to an expression for the associated spacetime metric.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا