Do you want to publish a course? Click here

Critical Boundary Conditions for the Effective String

88   0   0.0 ( 0 )
 Added by ul
 Publication date 1991
  fields
and research's language is English




Ask ChatGPT about the research

Gauge systems in the confining phase induce constraints at the boundaries of the effective string, which rule out the ordinary bosonic string even with short distance modifications. Allowing topological excitations, corresponding to winding around the colour flux tube, produces at the quantum level a universal free fermion string with a boundary phase nu=1/4. This coincides with a model proposed some time ago in order to fit Monte Carlo data of 3D and 4D Lattice gauge systems better. A universal value of the thickness of the colour flux tube is predicted.



rate research

Read More

136 - Arindam Ghosh Hazra 2010
The central theme of this thesis is noncommutativity in string theory. We explore in detail how noncommutative structures can emerge in case of the interacting bosonic string and even in the fermionic sector of superstring theory. We have shown in various approaches that string coordinates must be noncommutative in order to be compatible with boundary conditions. These noncommutative structures lead to new involutive algebra of constraints but generate same Virasoro algebra, indicating the internal consistency of our analysis
This is an introduction to two-dimensional conformal field theory and its applications in string theory. Modern concepts of conformal field theory are explained, and it is outlined how they are used in recent studies of D-branes in the strong curvature regime by means of CFT on surfaces with boundary.
A covariant calculus for the construction of effective string theories is developed. Effective string theory, describing quantum string-like excitations in arbitrary dimension, has in the past been constructed using the principles of conformal field theory, but not in a systematic way. Using the freedom of choice of field definition, a particular field definition is made in a systematic way to allow an explicit construction of effective string theories with manifest exact conformal symmetry. The impossibility of a manifestly invariant description of the Polchinski-Strominger Lagrangian is demonstrated and its meaning is explained.
We describe new boundary conditions for AdS$_2$ in Jackiw-Teitelboim gravity. The asymptotic symmetry group is enhanced to $r{Diff}(S^1)ltimes C^infty(S^1)$ whose breaking to $r{SL}(2,R)times r{U}(1)$ controls the near-AdS$_2$ dynamics. The action reduces to a boundary term which is a generalization of the Schwarzian theory and can be interpreted as the coadjoint action of the warped Virasoro group. This theory reproduces the low-energy effective action of the complex SYK model. We compute the Euclidean path integral and derive its relation to the random matrix ensemble of Saad, Shenker and Stanford. We study the flat space version of this action, and show that the corresponding path integral also gives an ensemble average, but of a much simpler nature. We explore some applications to near-extremal black holes.
We study breaking and restoration of supersymmetry in five-dimensional theories by determining the mass spectrum of fermions from their equations of motion. Boundary conditions can be obtained from either the action principle by extremizing an appropriate boundary action (interval approach) or by assigning parities to the fields (orbifold approach). In the former, fields extend continuously from the bulk to the boundaries, while in the latter the presence of brane mass-terms cause fields to jump when one moves across the branes. We compare the two approaches and in particular we carefully compute the non-trivial jump profiles of the wavefunctions in the orbifold picture for very general brane mass terms. We also include the effect of the Scherk-Schwarz mechanism in either approach and point out that for a suitable tuning of the boundary actions supersymmetry is present for arbitrary values of the Scherk-Schwarz parameter. As an application of the interval formalism we construct bulk and boundary actions for super Yang-Mills theory. Finally we extend our results to the warped Randall-Sundrum background.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا