No Arabic abstract
We describe new boundary conditions for AdS$_2$ in Jackiw-Teitelboim gravity. The asymptotic symmetry group is enhanced to $r{Diff}(S^1)ltimes C^infty(S^1)$ whose breaking to $r{SL}(2,R)times r{U}(1)$ controls the near-AdS$_2$ dynamics. The action reduces to a boundary term which is a generalization of the Schwarzian theory and can be interpreted as the coadjoint action of the warped Virasoro group. This theory reproduces the low-energy effective action of the complex SYK model. We compute the Euclidean path integral and derive its relation to the random matrix ensemble of Saad, Shenker and Stanford. We study the flat space version of this action, and show that the corresponding path integral also gives an ensemble average, but of a much simpler nature. We explore some applications to near-extremal black holes.
We revisit the construction in four-dimensional gauged $Spin(4)$ supergravity of the holographic duals to topologically twisted three-dimensional $mathcal{N}=4$ field theories. Our focus in this paper is to highlight some subtleties related to preserving supersymmetry in AdS/CFT, namely the inclusion of finite counterterms and the necessity of a Legendre transformation to find the dual to the field theory generating functional. Studying the geometry of these supergravity solutions, we conclude that the gravitational free energy is indeed independent from the metric of the boundary, and it vanishes for any smooth solution.
We study breaking and restoration of supersymmetry in five-dimensional theories by determining the mass spectrum of fermions from their equations of motion. Boundary conditions can be obtained from either the action principle by extremizing an appropriate boundary action (interval approach) or by assigning parities to the fields (orbifold approach). In the former, fields extend continuously from the bulk to the boundaries, while in the latter the presence of brane mass-terms cause fields to jump when one moves across the branes. We compare the two approaches and in particular we carefully compute the non-trivial jump profiles of the wavefunctions in the orbifold picture for very general brane mass terms. We also include the effect of the Scherk-Schwarz mechanism in either approach and point out that for a suitable tuning of the boundary actions supersymmetry is present for arbitrary values of the Scherk-Schwarz parameter. As an application of the interval formalism we construct bulk and boundary actions for super Yang-Mills theory. Finally we extend our results to the warped Randall-Sundrum background.
Gauge systems in the confining phase induce constraints at the boundaries of the effective string, which rule out the ordinary bosonic string even with short distance modifications. Allowing topological excitations, corresponding to winding around the colour flux tube, produces at the quantum level a universal free fermion string with a boundary phase nu=1/4. This coincides with a model proposed some time ago in order to fit Monte Carlo data of 3D and 4D Lattice gauge systems better. A universal value of the thickness of the colour flux tube is predicted.
In this work we consider AdS$_3$ gravitational theory with certain mixed boundary conditions at spatial infinity. Using the Chern-Simons formalism of AdS$_3$ gravity, we find that these boundary conditions lead to non-trivial boundary terms, which, in turn, produce exactly the spectrum of the $Tbar{T}/Jbar{T}$-deformed CFTs. We then follow the procedure for constructing asymptotic boundary dynamics of AdS$_3$ to derive the constrained $Tbar{T}$-deformed WZW model from Chern-Simons gravity. The resulting theory turns out to be the $Tbar{T}$-deformed Alekseev-Shatashvili action after disentangling the constraints. Furthermore, by adding a $U(1)$ gauge field associated to the current $J$, we obtain one type of the $Jbar T$-deformed WZW model, and show that its action can be constructed from the gravity side. These results provide a check on the correspondence between the $Tbar{T}/Jbar{T}$-deformed CFTs and the deformations of boundary conditions of AdS$_3$, the latter of which may be regarded as coordinate transformations.
We revisit the holographic dictionary for a free massless scalar in AdS$_3$, focusing on the `singleton solutions for which the boundary profile is an arbitrary chiral function. We look for consistent boundary conditions which include this class of solutions. On one hand, we give a no-go argument that they cannot be interpreted within any boundary condition which preserves full conformal invariance. On the other hand, we show that such solutions fit naturally in a generalization of the Comp`{e}re-Song-Strominger boundary conditions, which preserve a chiral Virasoro and current algebra. These observations have implications for the black hole deconstruction proposal, which proposes singleton solutions as candidate black hole microstate geometries. Our results suggest that the chiral boundary condition, which also contains the extremal BTZ black hole, is the natural setting for holographically interpreting the black hole deconstruction proposal.