Do you want to publish a course? Click here

Conformal field theory, boundary conditions and applications to string theory

132   0   0.0 ( 0 )
 Publication date 2000
  fields
and research's language is English




Ask ChatGPT about the research

This is an introduction to two-dimensional conformal field theory and its applications in string theory. Modern concepts of conformal field theory are explained, and it is outlined how they are used in recent studies of D-branes in the strong curvature regime by means of CFT on surfaces with boundary.



rate research

Read More

Topological field theory in three dimensions provides a powerful tool to construct correlation functions and to describe boundary conditions in two-dimensional conformal field theories.
120 - J. Fuchs , C. Schweigert 2001
We study properties of the category of modules of an algebra object A in a tensor category C. We show that the module category inherits various structures from C, provided that A is a Frobenius algebra with certain additional properties. As a by-product we obtain results about the Frobenius-Schur indicator in sovereign tensor categories. A braiding on C is not needed, nor is semisimplicity. We apply our results to the description of boundary conditions in two-dimensional conformal field theory and present illustrative examples. We show that when the module category is tensor, then it gives rise to a NIM-rep of the fusion rules, and discuss a possible relation with the representation theory of vertex operator algebras.
70 - C. Schweigert , J. Fuchs 2000
The correlation functions of a two-dimensional rational conformal field theory, for an arbitrary number of bulk and boundary fields and arbitrary world sheets can be expressed in terms of Wilson graphs in appropriate three-manifolds. We present a systematic approach to boundary conditions that break bulk symmetries. It is based on the construction, by `alpha-induction, of a fusion ring for the boundary fields. Its structure constants are the annulus coefficients and its 6j-symbols give the OPE of boundary fields. Symmetry breaking boundary conditions correspond to solitonic sectors.
148 - Arindam Ghosh Hazra 2010
The central theme of this thesis is noncommutativity in string theory. We explore in detail how noncommutative structures can emerge in case of the interacting bosonic string and even in the fermionic sector of superstring theory. We have shown in various approaches that string coordinates must be noncommutative in order to be compatible with boundary conditions. These noncommutative structures lead to new involutive algebra of constraints but generate same Virasoro algebra, indicating the internal consistency of our analysis
We explore and exploit the relation between non-planar correlators in ${cal N}=4$ super-Yang-Mills, and higher-genus closed string amplitudes in type IIB string theory. By conformal field theory techniques we construct the genus-one, four-point string amplitude in AdS$_5times S^5$ in the low-energy expansion, dual to an ${cal N}=4$ super-Yang-Mills correlator in the t Hooft limit at order $1/c^2$ in a strong coupling expansion. In the flat space limit, this maps onto the genus-one, four-point scattering amplitude for type II closed strings in ten dimensions. Using this approach we reproduce several results obtained via string perturbation theory. We also demonstrate a novel mechanism to fix subleading terms in the flat space limit of AdS amplitudes by using string/M-theory.
comments
Fetching comments Fetching comments
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا