No Arabic abstract
A covariant calculus for the construction of effective string theories is developed. Effective string theory, describing quantum string-like excitations in arbitrary dimension, has in the past been constructed using the principles of conformal field theory, but not in a systematic way. Using the freedom of choice of field definition, a particular field definition is made in a systematic way to allow an explicit construction of effective string theories with manifest exact conformal symmetry. The impossibility of a manifestly invariant description of the Polchinski-Strominger Lagrangian is demonstrated and its meaning is explained.
We show, by explicit calculation, that the next correction to the universal Luescher term in the effective string theories of Polchinski and Strominger is also universal. We find that to this order in inverse string-length, the ground-state energy as well as the excited-state energies are the same as those given by the Nambu-Goto string theory, the difference being that while the Nambu-Goto theory is inconsistent outside the critical dimension, the Polchinski-Strominger theory is by construction consistent for any space-time dimension. Our calculation explicitly avoids the use of any field redefinitions as they bring in many other issues that are likely to obscure the main points.
In the presence of a confining flux tube between a pair of sources the vacuum is no longer Poincare invariant. This symmetry is nonlinearly realized in the effective string action. A general method for finding a large class of Lorentz invariant contributions to the action is described. The relationship between this symmetry and diffeomorphism invariance is further investigated.
We review the current knowledge about the theoretical foundations of the effective string theory for confining flux tubes and the comparison of the predictions to pure gauge lattice data. A concise presentation of the effective string theory is provided, incorporating recent developments. We summarize the predictions for the spectrum and the profile/width of the flux tube and their comparison to lattice data. The review closes with a short summary of open questions for future research.
Recent works have explored non-perturbative effects due to the existence of (infinitesimal) Gribov copies in Yang-Mills-Chern-Simons theories in three Euclidean dimensions. In particular, the removal of such copies modify the gauge field propagator by a self-consistent dynamically generated mass parameter, the Gribov parameter. Due to the interplay with the topological mass introduced by the Chern-Simons term, the propagator features a non-trivial set of phases with poles of different nature, leading to the possible interpretation of a confinfing to deconfining phase transition. Inhere, we restore the BRST symmetry which is softly broken by the elimination of gauge copies and provide a BRST-invariant discussion of such a transition. In order to make clear all physical statements, we deal with linear covariant gauges which contain a gauge parameter and therefore allow for an explicit check of gauge parameter independence of physical results. We also discuss the generation of condensates due to the infrared relevance of infinitesimal Gribov copies.
It is shown, by explicit calculation, that the third-order terms in inverse string length in the spectrum of the effective string theories of Polchinski and Strominger are also the same as in Nambu-Goto theory, in addition to the universal Luescher terms. While the Nambu-Goto theory is inconsistent outside the critical dimension, the Polchinski-Strominger theory is by construction consistent for any space-time dimension. In the analysis of the spectrum, care is taken not to use any field redefinition, as it is felt that this has the potential to obscure important points. Nevertheless, as field redefinition is an important tool and the definition of the field should be made precise, a careful analysis of the choice of field definition leading to the terms in the action is also presented. Further, it is shown how a choice of field definition can be made in a systematic way at higher orders. To this end the transformation of measure involved is calculated, in the context of effective string theory, and thereby a quantum evaluation made of equivalence of theories related by a field redefinition. It is found that there are interesting possibilities resulting from a redefinition of fluctuation field.