Do you want to publish a course? Click here

Cosmological Perturbations in Non-Commutative Inflation

70   0   0.0 ( 0 )
 Added by Seoktae Koh
 Publication date 2007
  fields Physics
and research's language is English




Ask ChatGPT about the research

We compute the spectrum of cosmological perturbations in a scenario in which inflation is driven by radiation in a non-commutative space-time. In this scenario, the non-commutativity of space and time leads to a modified dispersion relation for radiation with two branches, which allows for inflation. The initial conditions for the cosmological fluctuations are thermal. This is to be contrasted with the situation in models of inflation in which the accelerated expansion of space is driven by the potential energy of a scalar field, and in which the fluctuations are of quantum vacuum type. We find that, in the limit that the expansion of space is almost exponential, the spectrum of fluctuations is scale-invariant with a slight red tilt. The magnitude of the tilt is different from what is obtained in a usual inflationary model with the same expansion rate during the period of inflation. The amplitude also differs, and can easily be adjusted to agree with observations.



rate research

Read More

We consider the non-commutative inflation model of [3] in which it is the unconventional dispersion relation for regular radiation which drives the accelerated expansion of space. In this model, we study the evolution of linear cosmological perturbations through the transition between the phase of accelerated expansion and the regular radiation-dominated phase of Standard Cosmology, the transition which is analogous to the reheating period in scalar field-driven models of inflation. If matter consists of only a single non-commutative radiation fluid, then the curvature perturbations are constant on super-Hubble scales. On the other hand, if we include additional matter fields which oscillate during the transition period, e.g. scalar moduli fields, then there can be parametric amplification of the amplitude of the curvature perturbations. We demonstrate this explicitly by numerically solving the full system of perturbation equations in the case where matter consists of both the non-commutative radiation field and a light scalar field which undergoes oscillations. Our model is an example where the parametric resonance of the curvature fluctuations is driven by the oscillations not of the inflaton field, but of the entropy mode
62 - J.-F. Dufaux 2004
Braneworld inflation is a phenomenology related to string theory that describes high-energy modifications to general relativistic inflation. The observable universe is a braneworld embedded in 5-dimensional anti de Sitter spacetime. Whe the 5-dimensional action is Einstein-Hilbert, we have a Randall-Sundrum type braneworld. The amplitude of tensor and scalar perturbations from inflation is strongly increased relative to the standard results, although the ratio of tensor to scalar amplitudes still obeys the standard consistency relation. If a Gauss-Bonnet term is included in the action, as a high-energy correction motivated by string theory, we show that there are important changes to the Randall-Sundrum case. We give an exact analysis of the tensor perturbations. They satisfy the same wave equation and have the same spectrum as in the Randall-Sundrum case, but the Gauss-Bonnet change to the junction conditions leads to a modified amplitude of gravitational waves. The amplitude is no longer monotonically increasing with energy scale, but decreases asymptotically after an initial rise above the standard level. Using an approximation that neglects bulk effects, we show that the amplitude of scalar perturbations has a qualitatively similar behaviour to the tensor amplitude. In addition, the tensor to scalar ratio breaks the standard consistency relation.
We investigate cosmological perturbations of scalar-tensor theories in Palatini formalism. First we introduce an action where the Ricci scalar is conformally coupled to a function of a scalar field and its kinetic term and there is also a k-essence term consisting of the scalar and its kinetic term. This action has three frames that are equivalent to one another: the original Jordan frame, the Einstein frame where the metric is redefined, and the Riemann frame where the connection is redefined. For the first time in the literature, we calculate the quadratic action and the sound speed of scalar and tensor perturbations in three different frames and show explicitly that they coincide. Furthermore, we show that for such action the sound speed of gravitational waves is unity. Thus, this model serves as dark energy as well as an inflaton even though the presence of the dependence of the kinetic term of a scalar field in the non-minimal coupling, different from the case in metric formalism. We then proceed to construct the L3 action called Galileon terms in Palatini formalism and compute its perturbations. We found that there are essentially 10 different(inequivalent) definitions in Palatini formalism for a given Galileon term in metric formalism. We also see that,in general, the L3 terms have a ghost due to Ostrogradsky instability and the sound speed of gravitational waves could potentially deviate from unity, in sharp contrast with the case of metric formalism. Interestingly, once we eliminate such a ghost, the sound speed of gravitational waves also becomes unity. Thus, the ghost-free L3 terms in Palatini formalism can still serve as dark energy as well as an inflaton, like the case in metric formalism.
We revisit the squeezed-limit non-Gaussianity in the single-field non-attractor inflation models from the viewpoint of the cosmological soft theorem. In the single-field attractor models, inflatons trajectories with different initial conditions effectively converge into a single trajectory in the phase space, and hence there is only one emph{clock} degree of freedom (DoF) in the scalar part. Its long-wavelength perturbations can be absorbed into the local coordinate renormalization and lead to the so-called emph{consistency relation} between $n$- and $(n+1)$-point functions. On the other hand, if the inflaton dynamics deviates from the attractor behavior, its long-wavelength perturbations cannot necessarily be absorbed and the consistency relation is expected not to hold any longer. In this work, we derive a formula for the squeezed bispectrum including the explicit correction to the consistency relation, as a proof of its violation in the non-attractor cases. First one must recall that non-attractor inflation needs to be followed by attractor inflation in a realistic case. Then, even if a specific non-attractor phase is effectively governed by a single DoF of phase space (represented by the exact ultra-slow-roll limit) and followed by a single-DoF attractor phase, its transition phase necessarily involves two DoF in dynamics and hence its long-wavelength perturbations cannot be absorbed into the local coordinate renormalization. Thus, it can affect local physics, even taking account of the so-called emph{local observer effect}, as shown by the fact that the bispectrum in the squeezed limit can go beyond the consistency relation. More concretely, the observed squeezed bispectrum does not vanish in general for long-wavelength perturbations exiting the horizon during a non-attractor phase.
We investigate the scalar metric perturbations about a de Sitter brane universe in a 5-dimensional anti de Sitter bulk. We compare the master-variable formalism, describing metric perturbations in a 5-dimensional longitudinal gauge, with results in a Gaussian normal gauge. For a vacuum brane (with constant brane tension) there is a continuum of normalizable Kaluza-Klein modes, with m>3H/2, which remain in the vacuum state. A light radion mode, with m=sqrt{2}H, satisfies the boundary conditions for two branes but is not normalizable in the single-brane case. When matter is introduced (as a test field) on the brane, this mode, together with the zero-mode and an infinite ladder of discrete tachyonic modes, become normalizable. However, the boundary condition requires the self-consistent 4-dimensional evolution of scalar field perturbations on the brane and the dangerous growing modes are not excited. These normalizable discrete modes introduce corrections at first-order to the scalar field perturbations computed in a slow-roll expansion. On super-Hubble scales, the correction is smaller than slow-roll corrections to the de Sitter background. However on small scales the corrections can become significant.
comments
Fetching comments Fetching comments
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا