Do you want to publish a course? Click here

Cosmological perturbations from braneworld inflation with a Gauss-Bonnet term

63   0   0.0 ( 0 )
 Added by Roy Maartens
 Publication date 2004
  fields Physics
and research's language is English
 Authors J.-F. Dufaux




Ask ChatGPT about the research

Braneworld inflation is a phenomenology related to string theory that describes high-energy modifications to general relativistic inflation. The observable universe is a braneworld embedded in 5-dimensional anti de Sitter spacetime. Whe the 5-dimensional action is Einstein-Hilbert, we have a Randall-Sundrum type braneworld. The amplitude of tensor and scalar perturbations from inflation is strongly increased relative to the standard results, although the ratio of tensor to scalar amplitudes still obeys the standard consistency relation. If a Gauss-Bonnet term is included in the action, as a high-energy correction motivated by string theory, we show that there are important changes to the Randall-Sundrum case. We give an exact analysis of the tensor perturbations. They satisfy the same wave equation and have the same spectrum as in the Randall-Sundrum case, but the Gauss-Bonnet change to the junction conditions leads to a modified amplitude of gravitational waves. The amplitude is no longer monotonically increasing with energy scale, but decreases asymptotically after an initial rise above the standard level. Using an approximation that neglects bulk effects, we show that the amplitude of scalar perturbations has a qualitatively similar behaviour to the tensor amplitude. In addition, the tensor to scalar ratio breaks the standard consistency relation.



rate research

Read More

We compute the spectrum of cosmological perturbations in a scenario in which inflation is driven by radiation in a non-commutative space-time. In this scenario, the non-commutativity of space and time leads to a modified dispersion relation for radiation with two branches, which allows for inflation. The initial conditions for the cosmological fluctuations are thermal. This is to be contrasted with the situation in models of inflation in which the accelerated expansion of space is driven by the potential energy of a scalar field, and in which the fluctuations are of quantum vacuum type. We find that, in the limit that the expansion of space is almost exponential, the spectrum of fluctuations is scale-invariant with a slight red tilt. The magnitude of the tilt is different from what is obtained in a usual inflationary model with the same expansion rate during the period of inflation. The amplitude also differs, and can easily be adjusted to agree with observations.
Positively-curved, oscillatory universes have recently been shown to have important consequences for the pre-inflationary dynamics of the early universe. In particular, they may allow a self-interacting scalar field to climb up its potential during a very large number of these cycles. The cycles are naturally broken when the potential reaches a critical value and the universe begins to inflate, thereby providing a `graceful entrance to early universe inflation. We study the dynamics of this behaviour within the context of braneworld scenarios which exhibit a bounce from a collapsing phase to an expanding one. The dynamics can be understood by studying a general class of braneworld models that are sourced by a scalar field with a constant potential. Within this context, we determine the conditions a given model must satisfy for a graceful entrance to be possible in principle. We consider the bouncing braneworld model proposed by Shtanov and Sahni and show that it exhibits the features needed to realise a graceful entrance to inflation for a wide region of parameter space.
We study the effect of the Gauss-Bonnet term on vacuum decay process in the Coleman-De Luccia formalism. The Gauss-Bonnet term has an exponential coupling with the real scalar field, which appears in the low energy effective action of string theories. We calculate numerically the instanton solution, which describes the process of vacuum decay, and obtain the critical size of bubble. We find that the Gauss-Bonnet term has a nontrivial effect on the false vacuum decay, depending on the Gauss-Bonnet coefficient.
We investigate the scalar metric perturbations about a de Sitter brane universe in a 5-dimensional anti de Sitter bulk. We compare the master-variable formalism, describing metric perturbations in a 5-dimensional longitudinal gauge, with results in a Gaussian normal gauge. For a vacuum brane (with constant brane tension) there is a continuum of normalizable Kaluza-Klein modes, with m>3H/2, which remain in the vacuum state. A light radion mode, with m=sqrt{2}H, satisfies the boundary conditions for two branes but is not normalizable in the single-brane case. When matter is introduced (as a test field) on the brane, this mode, together with the zero-mode and an infinite ladder of discrete tachyonic modes, become normalizable. However, the boundary condition requires the self-consistent 4-dimensional evolution of scalar field perturbations on the brane and the dangerous growing modes are not excited. These normalizable discrete modes introduce corrections at first-order to the scalar field perturbations computed in a slow-roll expansion. On super-Hubble scales, the correction is smaller than slow-roll corrections to the de Sitter background. However on small scales the corrections can become significant.
Radion stabilization is analyzed in 5-dimensional models with branes in the presence of Gauss-Bonnet interactions. The Goldberger-Wise mechanism is considered for static and inflating backgrounds. The necessary and sufficient conditions for stability are given for the static case. The influence of the Gauss-Bonnet term on the radion mass and the inter-brane distance is analyzed and illustrated by numerical examples. The interplay between the radion stabilization and the cosmological constant problem is discussed.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا