No Arabic abstract
We investigate cosmological perturbations of scalar-tensor theories in Palatini formalism. First we introduce an action where the Ricci scalar is conformally coupled to a function of a scalar field and its kinetic term and there is also a k-essence term consisting of the scalar and its kinetic term. This action has three frames that are equivalent to one another: the original Jordan frame, the Einstein frame where the metric is redefined, and the Riemann frame where the connection is redefined. For the first time in the literature, we calculate the quadratic action and the sound speed of scalar and tensor perturbations in three different frames and show explicitly that they coincide. Furthermore, we show that for such action the sound speed of gravitational waves is unity. Thus, this model serves as dark energy as well as an inflaton even though the presence of the dependence of the kinetic term of a scalar field in the non-minimal coupling, different from the case in metric formalism. We then proceed to construct the L3 action called Galileon terms in Palatini formalism and compute its perturbations. We found that there are essentially 10 different(inequivalent) definitions in Palatini formalism for a given Galileon term in metric formalism. We also see that,in general, the L3 terms have a ghost due to Ostrogradsky instability and the sound speed of gravitational waves could potentially deviate from unity, in sharp contrast with the case of metric formalism. Interestingly, once we eliminate such a ghost, the sound speed of gravitational waves also becomes unity. Thus, the ghost-free L3 terms in Palatini formalism can still serve as dark energy as well as an inflaton, like the case in metric formalism.
We classify singularities in FRW cosmologies, which dynamics can be reduced to the dynamical system of the Newtonian type. This classification is performed in terms of geometry of a potential function if it has poles. At the sewn singularity, which is of a finite scale factor type, the singularity in the past meets the singularity in the future. We show, that such singularities appear in the Starobinsky model in $f(hat{R})=hat{R}+gamma hat{R}^2$ in the Palatini formalism, when dynamics is determined by the corresponding piece-wise smooth dynamical system. As an effect we obtain a degenerated singularity. Analytical calculations are given for the cosmological model with matter and the cosmological constant. The dynamics of model is also studied using dynamical system methods. From the phase portraits we find generic evolutionary scenarios of the evolution of the Universe. For this model, the best fit value of $Omega_gamma=3gamma H_0^2$ is equal $9.70times 10^{-11}$. We consider model in both Jordan and Einstein frames. We show that after transition to the Einstein frame we obtain both form of the potential of the scalar field and the decaying Lambda term.
We study linear cosmological perturbations in the ``healthy extension of Horava-Lifshitz gravity which has recently been analyzed cite{BPS2}. We find that there are two degrees of freedom for scalar metric fluctuations, but that one of them decouples in the infrared limit. Also, for appropriate choices of the parameters defining the Lagrangian, the extra mode can be made well-behaved even in the ultraviolet.
If there exist higher-spin particles during inflation which are light compared to the Hubble rate, they may leave distinct statistical anisotropic imprints on the correlators involving scalar and graviton fluctuations. We characterise such signatures using the dS/CFT$_3$ correspondence and the operator product expansion techniques. In particular, we obtain generic results for the case of partially massless higher-spin states.
We calculate the entanglement entropy of scalar perturbations due to gravitational non-linearities present in any model of canonically-coupled, single-field ekpyrosis. Specifically, we focus on a recent model of improved ekpyrosis which is able to generate a scale-invariant power spectrum of curvature perturbations and gravitational waves as well as have a non-singular bounce due to an S-brane at the end of ekpyrotic contraction. By requiring that the entanglement entropy remians subdominant to the thermal entropy produced during reheating, we get an upper bound on the energy scale of the bounce.
We construct the gauge invariant free action for cosmological perturbations for the nonminimally coupled inflaton field in the Jordan frame. For this the phase space formalism is used, which keeps track of all the dynamical and constraint fields. We perform explicit conformal transformations to demonstrate the physical equivalence between the Jordan and Einstein frames at the level of quadratic perturbations. We show how to generalize the formalism to the case of a more complicated scalar sector with an internal symmetry, such as Higgs inflation. This work represents a first step in developing gauge invariant perturbation theory for nonminimally coupled inflationary models.