Do you want to publish a course? Click here

Revisiting non-Gaussianity in non-attractor inflation models in the light of the cosmological soft theorem

159   0   0.0 ( 0 )
 Added by Yuichiro Tada
 Publication date 2021
  fields Physics
and research's language is English




Ask ChatGPT about the research

We revisit the squeezed-limit non-Gaussianity in the single-field non-attractor inflation models from the viewpoint of the cosmological soft theorem. In the single-field attractor models, inflatons trajectories with different initial conditions effectively converge into a single trajectory in the phase space, and hence there is only one emph{clock} degree of freedom (DoF) in the scalar part. Its long-wavelength perturbations can be absorbed into the local coordinate renormalization and lead to the so-called emph{consistency relation} between $n$- and $(n+1)$-point functions. On the other hand, if the inflaton dynamics deviates from the attractor behavior, its long-wavelength perturbations cannot necessarily be absorbed and the consistency relation is expected not to hold any longer. In this work, we derive a formula for the squeezed bispectrum including the explicit correction to the consistency relation, as a proof of its violation in the non-attractor cases. First one must recall that non-attractor inflation needs to be followed by attractor inflation in a realistic case. Then, even if a specific non-attractor phase is effectively governed by a single DoF of phase space (represented by the exact ultra-slow-roll limit) and followed by a single-DoF attractor phase, its transition phase necessarily involves two DoF in dynamics and hence its long-wavelength perturbations cannot be absorbed into the local coordinate renormalization. Thus, it can affect local physics, even taking account of the so-called emph{local observer effect}, as shown by the fact that the bispectrum in the squeezed limit can go beyond the consistency relation. More concretely, the observed squeezed bispectrum does not vanish in general for long-wavelength perturbations exiting the horizon during a non-attractor phase.



rate research

Read More

Non-attractor inflation is known as the only single field inflationary scenario that can violate non-Gaussianity consistency relation with the Bunch-Davies vacuum state and generate large local non-Gaussianity. However, it is also known that the non-attractor inflation by itself is incomplete and should be followed by a phase of slow-roll attractor. Moreover, there is a transition process between these two phases. In the past literature, this transition was approximated as instant and the evolution of non-Gaussianity in this phase was not fully studied. In this paper, we follow the detailed evolution of the non-Gaussianity through the transition phase into the slow-roll attractor phase, considering different types of transition. We find that the transition process has important effect on the size of the local non-Gaussianity. We first compute the net contribution of the non-Gaussianities at the end of inflation in canonical non-attractor models. If the curvature perturbations keep evolving during the transition - such as in the case of smooth transition or some sharp transition scenarios - the $mathcal{O}(1)$ local non-Gaussianity generated in the non-attractor phase can be completely erased by the subsequent evolution, although the consistency relation remains violated. In extremal cases of sharp transition where the super-horizon modes freeze immediately right after the end of the non-attractor phase, the original non-attractor result can be recovered. We also study models with non-canonical kinetic terms, and find that the transition can typically contribute a suppression factor in the squeezed bispectrum, but the final local non-Gaussianity can still be made parametrically large.
We study the structure of multi-field inflation models where the primordial curvature perturbation is able to vigorously interact with an ultra-light isocurvature field -- a massless fluctuation orthogonal to the background inflationary trajectory in field space. We identify a class of inflationary models where ultra-light fields can emerge as a consequence of an underlying scaling transformation that rescales the entire systems action and keeps the classical equations of motion invariant. This scaling invariance ensures the existence of an ultra-light fluctuation that freezes after horizon crossing. If the inflationary trajectory is misaligned with respect to the scaling symmetry direction, then the isocurvature field is proportional to this ultra-light field, and becomes massless. In addition, we find that even if the isocurvature field interacts strongly with the curvature perturbation --transferring its own statistics to the curvature perturbation-- it is unable to induce large non-Gaussianity. The reason is simply that the same mechanism ensuring a suppressed mass for the isocurvature field is also responsible for suppressing its self-interactions. As a result, in models with light isocurvature fields the bispectrum is generally expected to be slow-roll suppressed, but with a squeezed limit that differs from Maldacenas consistency relation.
We compute the spectrum of cosmological perturbations in a scenario in which inflation is driven by radiation in a non-commutative space-time. In this scenario, the non-commutativity of space and time leads to a modified dispersion relation for radiation with two branches, which allows for inflation. The initial conditions for the cosmological fluctuations are thermal. This is to be contrasted with the situation in models of inflation in which the accelerated expansion of space is driven by the potential energy of a scalar field, and in which the fluctuations are of quantum vacuum type. We find that, in the limit that the expansion of space is almost exponential, the spectrum of fluctuations is scale-invariant with a slight red tilt. The magnitude of the tilt is different from what is obtained in a usual inflationary model with the same expansion rate during the period of inflation. The amplitude also differs, and can easily be adjusted to agree with observations.
Several recent proposals to embed inflation into high-energy physics rely on inflationary dynamics characterized by a strongly non-geodesic motion in negatively curved field space. This naturally leads to a transient instability of perturbations on sub-Hubble scales, and to their exponential amplification. Supported by first-principle numerical computations, and by the analytical insight provided by the effective field theory of inflation, we show that the bispectrum is enhanced in flattened configurations, and we argue that an analogous result holds for all higher-order correlation functions. These ``hyper non-Gaussianities thus provide powerful model-independent constraints on non-standard inflationary attractors motivated by the search for ultraviolet completions of inflation.
We discuss the hybrid inflation model where the inflaton field is nonminimally coupled to gravity. In the Jordan frame, the potential contains $phi^4$ term as well as terms in the original hybrid inflation model. In our model, inflation can be classified into the type (I) and the type (II). In the type (I), inflation is terminated by the tachyonic instability of the waterfall field, while in the type (II) by the violation of slow-roll conditions. In our model, the reheating takes place only at the true minimum and even in the case (II) finally the tachyonic instability occurs after the termination of inflation. For a negative nonminimal coupling, inflation takes place in the vacuum-dominated region, in the large field region, or near the local minimum/maximum. Inflation in the vacuum dominated region becomes either the type (I) or (II), resulting in blue or red spectrum of the curvature perturbations, respectively. Inflation around the local maximum can be either the type (I) or the type (II), which results in the red spectrum of the curvature perturbations, while it around the local minimum must be the type (I), which results in the blue spectrum. In the large field region, to terminate inflation, potential in the Einstein frame must be positively tilted, always resulting in the red spectrum. We then numerically solve the equations of motion to investigate the whole dynamics of inflaton and confirm that the spectrum of curvature perturbations changes from red to blue ones as scales become smaller.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا