Do you want to publish a course? Click here

PP-Wave / CFT_2 Duality

99   0   0.0 ( 0 )
 Added by Lubos Motl
 Publication date 2002
  fields
and research's language is English




Ask ChatGPT about the research

We investigate the pp-wave limit of the AdS_3times S^3times K3 compactification of Type IIB string theory from the point of view of the dual Sym_N(K3) CFT. It is proposed that a fundamental string in this pp-wave geometry is dual to the c=6 effective string of the Sym_N(K3) CFT, with the string bits of the latter being composed of twist operators. The massive fundamental string oscillators correspond to certain twisted Virasoro generators in the effective string. It is shown that both the ground states and the genus expansion parameter (at least in the orbifold limit of the CFT) coincide. Surprisingly the latter scales like J^2/N rather than the J^4/N^2 which might have been expected. We demonstrate a leading-order agreement between the pp-wave and CFT particle spectra. For a degenerate special case (one NS 5-brane) an intriguing complete agreement is found.



rate research

Read More

We show that in any two dimensional conformal field theory with (2, 2) supersymmetry one can define a supersymmetric analog of the usual Renyi entropy of a spatial region A. It differs from the Renyi entropy by a universal function (which we compute) of the central charge, Renyi parameter n and the geometric parameters of A. In the limit $n to1$ it coincides with the entanglement entropy. Thus, it contains the same information as the Renyi entropy but its computation only involves correlation functions of chiral and anti-chiral operators. We also show that this quantity appears naturally in string theory on $AdS_3$.
Recently we proposed a universal solvable irrelevant deformation of $AdS_3/CFT_2$ duality, which leads in the ultraviolet to a theory with a Hagedorn entropy [1]. In this note we provide a worldsheet description of this theory as a coset CFT, and compare its spectrum to the field theory predictions of [2,3].
We generalize our recent analysis [2006.13249] of probe string dynamics to the case of general single-trace $Tbar T$, $Jbar T$ and $Tbar J$ deformations. We show that in regions in coupling space where the bulk geometry is smooth, the classical trajectories of such strings are smooth and approach the linear dilaton boundary at either the far past or the far future. These trajectories give rise to quantum scattering states with arbitrarily high energies. When the bulk geometry has closed timelike curves (CTCs), the trajectories are singular for energies above a critical value $E_c$. This singularity occurs in the region with CTCs, and the value of $E_c$ agrees with that read off from the dual boundary theory for all values of the couplings and charges.
The behaviour of matrix string theory in the background of a type IIA pp wave at small string coupling, g_s << 1, is determined by the combination M g_s where M is a dimensionless parameter proportional to the strength of the Ramond-Ramond background. For M g_s << 1, the matrix string theory is conventional; only the degrees of freedom in the Cartan subalgebra contribute, and the theory reduces to copies of the perturbative string. For M g_s >> 1, the theory admits degenerate vacua representing fundamental strings blown up into fuzzy spheres with nonzero lightcone momenta. We determine the spectrum of small fluctuations around these vacua. Around such a vacuum all N-squared degrees of freedom are excited with comparable energies. The spectrum of masses has a spacing which is independent of the radius of the fuzzy sphere, in agreement with expected behaviour of continuum giant gravitons. Furthermore, for fuzzy spheres characterized by reducible representations of SU(2) and vanishing Wilson lines, the boundary conditions on the field are characterized by a set of continuous angles which shows that generically the blown up strings do not ``close.
We consider the generalization of the S-duality transformation previously investigated in the context of the FQHE and s-wave superconductivity to p-wave superconductivity in 2+1 dimensions in the framework of the AdS/CFT correspondence. The vector Cooper condensate transforms under the S-duality action to the pseudovector condensate at the dual side. The 3+1-dimensional Einstein-Yang-Mills theory, the holographic dual to p-wave superconductivity, is used to investigate the S-duality action via the AdS/CFT correspondence. It is shown that in order to implement the duality transformation, chemical potentials both on the electric and magnetic side of the duality have to be introduced. A relation for the product of the nonabelian conductivities in the dual models is derived. We also conjecture a flavor S-duality transformation in the holographic dual to 3+1-dimensional QCD low-energy QCD with non-abelian flavor gauge groups. The conjectured S-duality interchanges isospin and baryonic chemical potentials.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا