Do you want to publish a course? Click here

Fuzzy Spheres in pp Wave Matrix String Theory

96   0   0.0 ( 0 )
 Added by Jeremy Michelson
 Publication date 2003
  fields
and research's language is English




Ask ChatGPT about the research

The behaviour of matrix string theory in the background of a type IIA pp wave at small string coupling, g_s << 1, is determined by the combination M g_s where M is a dimensionless parameter proportional to the strength of the Ramond-Ramond background. For M g_s << 1, the matrix string theory is conventional; only the degrees of freedom in the Cartan subalgebra contribute, and the theory reduces to copies of the perturbative string. For M g_s >> 1, the theory admits degenerate vacua representing fundamental strings blown up into fuzzy spheres with nonzero lightcone momenta. We determine the spectrum of small fluctuations around these vacua. Around such a vacuum all N-squared degrees of freedom are excited with comparable energies. The spectrum of masses has a spacing which is independent of the radius of the fuzzy sphere, in agreement with expected behaviour of continuum giant gravitons. Furthermore, for fuzzy spheres characterized by reducible representations of SU(2) and vanishing Wilson lines, the boundary conditions on the field are characterized by a set of continuous angles which shows that generically the blown up strings do not ``close.



rate research

Read More

Recently, Berenstein et al. have proposed a duality between a sector of N=4 super-Yang-Mills theory with large R-charge J, and string theory in a pp-wave background. In the limit considered, the effective t Hooft coupling has been argued to be lambda=g_{YM}^2 N/J^2=1/(mu p^+ alpha)^2. We study Yang-Mills theory at small lambda (large mu) with a view to reproducing string interactions. We demonstrate that the effective genus counting parameter of the Yang-Mills theory is g_2^2=J^4/N^2=(4 pi g_s)^2 (mu p^+ alpha)^4, the effective two-dimensional Newton constant for strings propagating on the pp-wave background. We identify g_2 sqrt{lambda} as the effective coupling between a wide class of excited string states on the pp-wave background. We compute the anomalous dimensions of BMN operators at first order in g_2^2 and lambda and interpret our result as the genus one mass renormalization of the corresponding string state. We postulate a relation between the three-string vertex function and the gauge theory three-point function and compare our proposal to string field theory. We utilize this proposal, together with quantum mechanical perturbation theory, to recompute the genus one energy shift of string states, and find precise agreement with our earlier computation.
The most general parallelizable pp-wave backgrounds which are non-dilatonic solutions in the NS-NS sector of type IIA and IIB string theories are considered. We demonstrate that parallelizable pp-wave backgrounds are necessarily homogeneous plane-waves, and that a large class of homogeneous plane-waves are parallelizable, stating the necessary conditions. Such plane-waves can be classified according to the number of preserved supersymmetries. In type IIA, these include backgrounds preserving 16, 18, 20, 22 and 24 supercharges, while in the IIB case they preserve 16, 20, 24 or 28 supercharges. An intriguing property of parallelizable pp-wave backgrounds is that the bosonic part of these solutions are invariant under T-duality, while the number of supercharges might change under T-duality. Due to their alpha exactness, they provide interesting backgrounds for studying string theory. Quantization of string modes, their compactification and behaviour under T-duality are studied. In addition, we consider BPS $Dp$-branes, and show that these $Dp$-branes can be classified in terms of the locations of their world volumes with respect to the background $H$-field.
We study and analyse the questions regarding breakdown of global symmetry on noncommutative sphere. We demonstrate this by considering a complex scalar field on a fuzzy sphere and isolating Goldstone modes. We discuss the role of nonlocal interactions present in these through geometrical considerations.
137 - Aya Kasai , Yutaka Ookouchi 2015
We investigate dielectric branes in false vacua in Type IIB string theory. The dielectric branes are supported against collapsing by lower energy vacua inside spherical or tube-like branes. We claim that such branes can be seeds for semi-classical (or quantum mechanical) decay of the false vacua, which makes the life-time of the false vacua shorter. Also, we discuss a topology change of a bubble corresponding to the fuzzy monopole triggered by dissolving fundamental strings.
We analyse two issues that arise in the context of (matrix) string theories in plane wave backgrounds, namely (1) the use of Brinkmann- versus Rosen-variables in the quantum theory for general plane waves (which we settle conclusively in favour of Brinkmann variables), and (2) the regularisation of the quantum dynamics for a certain class of singular plane waves (discussing the benefits and limitations of regularisations of the plane-wave metric itself).
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا