Recently we proposed a universal solvable irrelevant deformation of $AdS_3/CFT_2$ duality, which leads in the ultraviolet to a theory with a Hagedorn entropy [1]. In this note we provide a worldsheet description of this theory as a coset CFT, and compare its spectrum to the field theory predictions of [2,3].
We generalize our recent analysis [2006.13249] of probe string dynamics to the case of general single-trace $Tbar T$, $Jbar T$ and $Tbar J$ deformations. We show that in regions in coupling space where the bulk geometry is smooth, the classical trajectories of such strings are smooth and approach the linear dilaton boundary at either the far past or the far future. These trajectories give rise to quantum scattering states with arbitrarily high energies. When the bulk geometry has closed timelike curves (CTCs), the trajectories are singular for energies above a critical value $E_c$. This singularity occurs in the region with CTCs, and the value of $E_c$ agrees with that read off from the dual boundary theory for all values of the couplings and charges.
We show that in any two dimensional conformal field theory with (2, 2) supersymmetry one can define a supersymmetric analog of the usual Renyi entropy of a spatial region A. It differs from the Renyi entropy by a universal function (which we compute) of the central charge, Renyi parameter n and the geometric parameters of A. In the limit $n to1$ it coincides with the entanglement entropy. Thus, it contains the same information as the Renyi entropy but its computation only involves correlation functions of chiral and anti-chiral operators. We also show that this quantity appears naturally in string theory on $AdS_3$.
We study a Wess-Zumino-Witten model with target space AdS_3 x (S^3 x S^3 x S^1)/Z_2. This allows us to construct space-time N=3 superconformal theories. By combining left-, and right-moving parts through a GSO and a Z_2 projections, a new asymmetric (N,bar{N})=(3,1) model is obtained. It has an extra gauge (affine) SU(2) symmetry in the target space of the type IIA string. An associated configuration is realized as slantwise intersecting M5-M2 branes with a Z_2-fixed plane in the M-theory viewpoint.
We construct a two-parameter deformation of the Metsaev-Tseytlin action for supercosets with isometry group of the form G x G. The resulting action is classically integrable and is Poisson-Lie symmetric suggesting that the symmetry of the model is q-deformed, U_q_L(G) x U_q_R(G). Focusing on the cases relevant for strings moving in AdS_3 x S^3 x T^4 and AdS_3 x S^3 x S^3 x S^1, we analyze the corresponding deformations of the AdS_3 and S^3 metrics. We also construct a two-parameter $q$-deformation of the u(1) + psu(1|1)^2 x u(1) x R^3-invariant R-matrix and closure condition, which underlie the light-cone gauge S-matrix and dispersion relation of the aforementioned string theories. With the appropriate identification of parameters, the near-BMN limit of the dispersion relation is shown to agree with that found from the deformed supercoset sigma model.
We investigate the pp-wave limit of the AdS_3times S^3times K3 compactification of Type IIB string theory from the point of view of the dual Sym_N(K3) CFT. It is proposed that a fundamental string in this pp-wave geometry is dual to the c=6 effective string of the Sym_N(K3) CFT, with the string bits of the latter being composed of twist operators. The massive fundamental string oscillators correspond to certain twisted Virasoro generators in the effective string. It is shown that both the ground states and the genus expansion parameter (at least in the orbifold limit of the CFT) coincide. Surprisingly the latter scales like J^2/N rather than the J^4/N^2 which might have been expected. We demonstrate a leading-order agreement between the pp-wave and CFT particle spectra. For a degenerate special case (one NS 5-brane) an intriguing complete agreement is found.