Do you want to publish a course? Click here

Reply on `Comment on ``Comment on `Macroscopic Equation for the Roughness of Growing Interfaces in Quenched Disorder

190   0   0.0 ( 0 )
 Added by Lidia A. Braunstein
 Publication date 1999
  fields Physics
and research's language is English




Ask ChatGPT about the research

Reply to ``Comment on [Phys. Rev. Lett. 81, 630 (1998)]



rate research

Read More

106 - Saurya Das 2017
The above comment [E. I. Lashin, D. Dou, arXiv:1606.04738] claims that the paper Quantum Raychaudhuri Equation by S. Das, Phys. Rev. D89 (2014) 084068 [arXiv:1404.3093] has problematic points with regards to its derivation and implications. We show below that the above claim is incorrect, and that there are no problems with results of the above paper or its implications.
In their comment on our work (ArXiv:1912.07056v1), Cavagna textit{et al.} raise several interesting points on the phenomenology of flocks of birds, and conduct additional data analysis to back up their points. In particular, they question the existence of rigid body rotations in flocks of birds. In this reply, we first clarify the notions of rigid body rotations, and of rigidity itself. Then, we justify why we believe that it is legitimate to wonder about their importance when studying the spatial correlations between speeds in flocks of birds.
252 - Eiki Iyoda , Kazuya Kaneko , 2017
We reply to Comment by J. Gemmer, L. Knipschild, R. Steinigeweg (arXiv:1712.02128) on our paper Phys. Rev. Lett. 119, 100601 (2017).
In this reply to the comment by C. R. Willis, we show, by quoting his own statements, that the simulations reported in his original work with Boesch [Phys. Rev. B 42, 2290 (1990)] were done for kinks with nonzero initial velocity, in contrast to what Willis claims in his comment. We further show that his alleged proof, which assumes among other approximations that kinks are initially at rest, is not rigorous but an approximation. Moreover, there are other serious misconceptions which we discuss in our reply. As a consequence, our result that quasimodes do not exist in the sG equation [Phys. Rev. E 62, R60 (2000)] remains true.
We present an analytical continuous equation for the Tang and Leschhorn model [Phys. Rev A {bf 45}, R8309 (1992)] derived from his microscopic rules using a regularization procedure. As well in this approach the nonlinear term $( abla h)^2$ arises naturally from the microscopic dynamics even if the continuous equation is not the Kardar-Parisi-Zhang equation [Phys. Rev. Lett. {bf 56}, 889 (1986)] with quenched noise (QKPZ). Our equation looks like a QKPZ but with multiplicative quenched and thermal noise. The numerical integration of our equation reproduce the scaling exponents of the roughness of this directed percolation depinning model.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا