No Arabic abstract
In their comment on our work (ArXiv:1912.07056v1), Cavagna textit{et al.} raise several interesting points on the phenomenology of flocks of birds, and conduct additional data analysis to back up their points. In particular, they question the existence of rigid body rotations in flocks of birds. In this reply, we first clarify the notions of rigid body rotations, and of rigidity itself. Then, we justify why we believe that it is legitimate to wonder about their importance when studying the spatial correlations between speeds in flocks of birds.
We study a $2d$ Hamiltonian fluid made of particles carrying spins coupled to their velocities. At low temperatures and intermediate densities, this conservative system exhibits phase coexistence between a collectively moving droplet and a still gas. The particle displacements within the droplet have remarkably similar correlations to those of birds flocks. The center of mass behaves as an effective self-propelled particle, driven by the droplets total magnetization. The conservation of a generalized angular momentum leads to rigid rotations, opposite to the fluctuations of the magnetization orientation that, however small, are responsible for the shape and scaling of the correlations.
In this reply to the comment by C. R. Willis, we show, by quoting his own statements, that the simulations reported in his original work with Boesch [Phys. Rev. B 42, 2290 (1990)] were done for kinks with nonzero initial velocity, in contrast to what Willis claims in his comment. We further show that his alleged proof, which assumes among other approximations that kinks are initially at rest, is not rigorous but an approximation. Moreover, there are other serious misconceptions which we discuss in our reply. As a consequence, our result that quasimodes do not exist in the sG equation [Phys. Rev. E 62, R60 (2000)] remains true.
We study a model of flocking for a very large system (N=320,000) numerically. We find that in the long wavelength, long time limit, the fluctuations of the velocity and density fields are carried by propagating sound modes, whose dispersion and damping agree quantitatively with the predictions of our previous work using a continuum equation. We find that the sound velocity is anisotropic and characterized by its speed $c$ for propagation perpendicular to the mean velocity $<vec{v}>$, $<vec{v}>$ itself, and a third velocity $lambda <vec{v}>$, arising explicitly from the lack of Galilean invariance in flocks.
The effect of quenched (frozen) disorder on the collective motion of active particles is analyzed. We find that active polar systems are far more robust against quenched disorder than equilibrium ferromagnets. Long ranged order (a non-zero average velocity $langle{bf v}rangle$) persists in the presence of quenched disorder even in spatial dimensions $d=3$; in $d=2$, quasi-long-ranged order (i.e., spatial velocity correlations that decay as a power law with distance) occurs. In equilibrium systems, only quasi-long-ranged order in $d=3$ and short ranged order in $d=2$ are possible. Our theoretical predictions for two dimensions are borne out by simulations.
We reply to Comment by J. Gemmer, L. Knipschild, R. Steinigeweg (arXiv:1712.02128) on our paper Phys. Rev. Lett. 119, 100601 (2017).