Do you want to publish a course? Click here

Reply to Comment on `Quantum Raychaudhuri Equation

107   0   0.0 ( 0 )
 Added by Saurya Das
 Publication date 2017
  fields Physics
and research's language is English
 Authors Saurya Das




Ask ChatGPT about the research

The above comment [E. I. Lashin, D. Dou, arXiv:1606.04738] claims that the paper Quantum Raychaudhuri Equation by S. Das, Phys. Rev. D89 (2014) 084068 [arXiv:1404.3093] has problematic points with regards to its derivation and implications. We show below that the above claim is incorrect, and that there are no problems with results of the above paper or its implications.



rate research

Read More

155 - Saurya Das 2013
We compute quantum corrections to the Raychaudhuri equation, by replacing classical geodesics with quantal (Bohmian) trajectories, and show that they prevent focusing of geodesics, and the formation of conjugate points. We discuss implications for the Hawking-Penrose singularity theorems, and for curvature singularities.
The classical Raychaudhuri equation predicts the formation of conjugate points for a congruence of geodesics, in a finite proper time. This in conjunction with the Hawking-Penrose singularity theorems predicts the incompleteness of geodesics and thereby the singular nature of practically all spacetimes. We compute the generic corrections to the Raychaudhuri equation in the interior of a Schwarzschild black hole, arising from modifications to the algebra inspired by the generalized uncertainty principle (GUP) theories. Then we study four specific models of GUP, compute their effective dynamics as well as their expansion and its rate of change using the Raychaudhuri equation. We show that the modification from GUP in two of these models, where such modifications are dependent of the configuration variables, lead to finite Kretchmann scalar, expansion and its rate, hence implying the resolution of the singularity. However, the other two models for which the modifications depend on the momenta still retain their singularities even in the effective regime.
Usually, in mechanics, we obtain the trajectory of a particle in a given force field by solving Newtons second law with chosen initial conditions. In contrast, through our work here, we first demonstrate how one may analyse the behaviour of a suitably defined family of trajectories of a given mechanical system. Such an approach leads us to develop a mechanics analog following the well-known Raychaudhuri equation largely studied in Riemannian geometry and general relativity. The idea of geodesic focusing, which is more familiar to a relativist, appears to be analogous to the meeting of trajectories of a mechanical system within a finite time. Applying our general results to the case of simple pendula, we obtain relevant quantitative consequences. Thereafter, we set up and perform a straightforward experiment based on a system with two pendula. The experimental results on this system are found to tally well with our proposed theoretical model. In summary, the simple theory, as well as the related experiment, provides us with a way to understand the essence of a fairly involved concept in advanced physics from an elementary standpoint.
In this Reply we propose a modified security proof of the Quantum Dense Key Distribution protocol detecting also the eavesdropping attack proposed by Wojcik in his Comment.
J. W. Moffat and V. T. Toth submitted recently a comment (arXiv:0903.5291) on our latest paper Modified scalar-tensor-vector gravity theory and the constraint on its parameters [Deng, et al., Phys. Rev. D 79, 044014 (2009); arXiv:0901.3730 ]. We reply to each of their comments and justify our work and conclusions. Especially, their general STVG (MOG) theory has to be modified to fit the modern precision experiments.
comments
Fetching comments Fetching comments
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا