Do you want to publish a course? Click here

Coherent Lattice Vibrations in Carbon Nanotubes

100   0   0.0 ( 0 )
 Added by Junichiro Kono
 Publication date 2006
  fields Physics
and research's language is English




Ask ChatGPT about the research

We have generated and detected the radial-breathing mode of coherent lattice vibrations in single-walled carbon nanotubes using ultrashort laser pulses. Because the band gap is a function of diameter, these diameter oscillations cause ultrafast band gap oscillations, modulating interband excitonic resonances at the phonon frequencies (3-9 THz). Excitation spectra show a large number of pronounced peaks, mapping out chirality distributions in great detail.



rate research

Read More

We have used a femtosecond pump-probe impulsive Raman technique to explore the polarization dependence of coherent optical phonons in highly-purified and aligned semiconducting single-wall carbon nanotubes (SWCNTs). Coherent phonon spectra for the radial breathing modes (RBMs) exhibit a different monochromatic frequency between the film and solution samples, indicating the presence of differing exciton excitation processes. By varying the polarization of the incident pump beam on the aligned SWCNT film, we found that the anisotropy of the coherent RBM excitation depends on the laser wavelength, which we consider to be associated with the resonant and off-resonant behavior of RBM excitation.
The transport properties of a suspended carbon nanotube probed by means of a STM tip are investigated. A microscopic theory of the coupling between electrons and mechanical vibrations is developed. It predicts a position-dependent coupling constant, sizeable only in the region where the vibron is located. This fact has profound consequences on the transport properties, which allow to extract information on the location and size of the vibrating portions of the nanotube.
138 - Y.-S. Lim , J.-G. Ahn , J.-H. Kim 2009
We have observed large-amplitude coherent phonon oscillations of radial breathing modes (RBMs) in single-walled carbon nanotubes excited through the lowest-energy (E11) interband transitions. In contrast to the previously-studied coherent phonons excited through higher-energy (E22) transitions, these RBMs show comparable intensities between (n-m) mod 3 = 1 and -1 nanotubes. We also find novel non-resonantly excited RBMs over an excitation range of ~300 meV above the E11 transition, which we attribute to multi-phonon replicas arising from strong exciton-phonon coupling.
We review recent studies of coherent phonons (CPs) corresponding to the radial breathing mode (RBM) and G-mode in single-wall carbon nanotubes (SWCNTs) and graphene. Because of the bandgap-diameter relationship, RBM-CPs cause bandgap oscillations in SWCNTs, modulating interband transitions at terahertz frequencies. Interband resonances enhance CP signals, allowing for chirality determination. Using pulse shaping, one can selectively excite speci!c-chirality SWCNTs within an ensemble. G-mode CPs exhibit temperature-dependent dephasing via interaction with RBM phonons. Our microscopic theory derives a driven oscillator equation with a density-dependent driving term, which correctly predicts CP trends within and between (2n+m) families. We also find that the diameter can initially increase or decrease. Finally, we theoretically study the radial breathing like mode in graphene nanoribbons. For excitation near the absorption edge, the driving term is much larger for zigzag nanoribbons. We also explain how the armchair nanoribbon width changes in response to laser excitation.
We have calculated the effects of structural distortions of armchair carbon nanotubes on their electrical transport properties. We found that the bending of the nanotubes decreases their transmission function in certain energy ranges and leads to an increased electrical resistance. Electronic structure calculations show that these energy ranges contain localized states with significant $sigma$-$pi$ hybridization resulting from the increased curvature produced by bending. Our calculations of the contact resistance show that the large contact resistances observed for SWNTs are likely due to the weak coupling of the NT to the metal in side bonded NT-metal configurations.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا