Do you want to publish a course? Click here

Resonant Coherent Phonon Generation in Single-Walled Carbon Nanotubes through Near-Band-Edge Excitation

158   0   0.0 ( 0 )
 Added by Junichiro Kono
 Publication date 2009
  fields Physics
and research's language is English




Ask ChatGPT about the research

We have observed large-amplitude coherent phonon oscillations of radial breathing modes (RBMs) in single-walled carbon nanotubes excited through the lowest-energy (E11) interband transitions. In contrast to the previously-studied coherent phonons excited through higher-energy (E22) transitions, these RBMs show comparable intensities between (n-m) mod 3 = 1 and -1 nanotubes. We also find novel non-resonantly excited RBMs over an excitation range of ~300 meV above the E11 transition, which we attribute to multi-phonon replicas arising from strong exciton-phonon coupling.



rate research

Read More

Using femtosecond pump-probe spectroscopy with pulse shaping techniques, one can generate and detect coherent phonons in chirality-specific semiconducting single-walled carbon nanotubes. The signals are resonantly enhanced when the pump photon energy coincides with an interband exciton resonance, and analysis of such data provides a wealth of information on the chirality-dependence of light absorption, phonon generation, and phonon-induced band structure modulations. To explain our experimental results, we have developed a microscopic theory for the generation and detection of coherent phonons in single-walled carbon nanotubes using a tight-binding model for the electronic states and a valence force field model for the phonons. We find that the coherent phonon amplitudes satisfy a driven oscillator equation with the driving term depending on photoexcited carrier density. We compared our theoretical results with experimental results on mod 2 nanotubes and found that our model provides satisfactory overall trends in the relative strengths of the coherent phonon signal both within and between different mod 2 families. We also find that the coherent phonon intensities are considerably weaker in mod 1 nanotubes in comparison with mod~2 nanotubes, which is also in excellent agreement with experiment.
We have investigated the polarization dependence of the generation and detection of radial breathing mode (RBM) coherent phonons (CP) in highly-aligned single-walled carbon nanotubes. Using polarization-dependent pump-probe differential-transmission spectroscopy, we measured RBM CPs as a function of angle for two different geometries. In Type I geometry, the pump and probe polarizations were fixed, and the sample orientation was rotated, whereas, in Type II geometry, the probe polarization and sample orientation were fixed, and the pump polarization was rotated. In both geometries, we observed a very nearly complete quenching of the RBM CPs when the pump polarization was perpendicular to the nanotubes. For both Type I and II geometries, we have developed a microscopic theoretical model to simulate CP generation and detection as a function of polarization angle and found that the CP signal decreases as the angle goes from 0 degrees (parallel to the tube) to 90 degrees (perpendicular to the tube). We compare theory with experiment in detail for RBM CPs created by pumping at the E44 optical transition in an ensemble of single-walled carbon nanotubes with a diameter distribution centered around 3 nm, taking into account realistic band structure and imperfect nanotube alignment in the sample.
130 - Gang Wu , Jian Zhou , 2007
The radial-breathing-like phonon modes (RBLMs) of the double-walled carbon nanotubes are studied in a simple analytical model, in which the interaction force constants (FCs) can be obtained analytically from the continuous model. The RBLMs frequencies are obtained by solving the dynamical matrix, and their relationship with the tube radii can be obtained analytically, offering a powerful experimental tool for determining precisely the radii of the multi-walled carbon nanotubes.
182 - J. Ebbecke , C. J. Strobl , 2004
We have contacted single-walled carbon nanotubes after aligning the tubes by the use of surface acoustic waves. The acoustoelectric current has been measured at 4.2 K and a probing of the low-dimensional electronic states by the surface acoustic wave has been detected. By decreasing the acoustic wavelength resulting in an adjustment to the length of the defined carbon nanotube constriction a quantization of the acoustoelectric current has been observed.
178 - G. N. Ostojic , S. Zaric , J. Kono 2003
Wavelength-dependent pump-probe spectroscopy of micelle-suspended single-walled carbon nanotubes reveals two-component dynamics. The slow component (5-20 ps), which has not been observed previously, is resonantly enhanced whenever the pump photon energy coincides with an absorption peak and we attribute it to interband carrier recombination, whereas we interpret the always-present fast component (0.3-1.2 ps) as intraband carrier relaxation in non-resonantly excited nanotubes. The slow component decreases drastically with decreasing pH (or increasing H$^+$ doping), especially in large-diameter tubes. This can be explained as a consequence of the disappearance of absorption peaks at high doping due to the entrance of the Fermi energy into the valence band, i.e., a 1-D manifestation of the Burstein-Moss effect.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا