Do you want to publish a course? Click here

Classical-to-stochastic Coulomb blockade cross-over in aluminum arsenide wires

151   0   0.0 ( 0 )
 Added by Joel Moser
 Publication date 2005
  fields Physics
and research's language is English




Ask ChatGPT about the research

We report low-temperature differential conductance measurements in aluminum arsenide cleaved-edge overgrown quantum wires in the pinch-off regime. At zero source-drain bias we observe Coulomb blockade conductance resonances that become vanishingly small as the temperature is lowered below $250 {rm mK}$. We show that this behavior can be interpreted as a classical-to-stochastic Coulomb blockade cross-over in a series of asymmetric quantum dots, and offer a quantitative analysis of the temperature-dependence of the resonances lineshape. The conductance behavior at large source-drain bias is suggestive of the charge density wave conduction expected for a chain of quantum dots.



rate research

Read More

322 - J. Moser , T. Zibold , S. Roddaro 2005
We report conductance measurements in quantum wires made of aluminum arsenide, a heavy-mass, multi-valley one-dimensional (1D) system. Zero-bias conductance steps are observed as the electron density in the wire is lowered, with additional steps observable upon applying a finite dc bias. We attribute these steps to depopulation of successive 1D subbands. The quantum conductance is substantially reduced with respect to the anticipated value for a spin- and valley-degenerate 1D system. This reduction is consistent with disorder-induced, intra-wire backscattering which suppresses the transmission of 1D modes. Calculations are presented to demonstrate the role of strain in the 1D states of this cleaved-edge structure.
65 - T. Rejec 1999
The conductance through a quantum wire of cylindrical cross section and a weak bulge is solved exactly for two electrons within the Landauer-Buettiker formalism. We show that this open quantum dot exhibits spin-dependent Coulomb blockade resonances resulting in two anomalous structure on the rising edge to the first conductance plateau, one near 0.25(2e^2/h), related to a singlet resonance, and one near 0.7(2e^2/h), related to a triplet resonance. These resonances are generic and robust, occurring for other types of quantum wire and surviving to temperatures of a few degrees.
Correlated states emerge in low-dimensional systems owing to enhanced Coulomb interactions. Elucidating these states requires atomic scale characterization and delicate control capabilities. In this study, spectroscopic imaging-scanning tunneling microscopy was employed to investigate the correlated states residing in the one-dimensional electrons of the monolayer and bilayer MoSe2 mirror twin boundary (MTB). The Coulomb energies, determined by the wire length, drive the MTB into two types of ground states with distinct respective out-of-phase and in-phase charge orders. The two ground states can be reversibly converted through a metastable zero-energy state with in situ voltage pulses, which tunes the electron filling of the MTB via a polaronic process, as substantiated by first-principles calculations. Our modified Hubbard model reveals the ground states as correlated insulators from an on-site U-originated Coulomb interaction, dubbed Hubbard-type Coulomb blockade effect. Our work sets a foundation for understanding correlated physics in complex systems and for tailoring quantum states for nano-electronics applications.
512 - F. Sols , F. Guinea , 2007
We propose that recent transport experiments revealing the existence of an energy gap in graphene nanoribbons may be understood in terms of Coulomb blockade. Electron interactions play a decisive role at the quantum dots which form due to the presence of necks arising from the roughness of the graphene edge. With the average transmission as the only fitting parameter, our theory shows good agreement with the experimental data.
94 - I.L. Aleiner , P.W. Brouwer , 2001
We review the quantum interference effects in a system of interacting electrons confined to a quantum dot. The review starts with a description of an isolated quantum dot. We discuss the status of the Random Matrix theory (RMT) of the one-electron states in the dot, present the universal form of the interaction Hamiltonian compatible with the RMT, and derive the leading corrections to the universal interaction Hamiltonian. Next, we discuss a theoretical description of a dot connected to leads via point contacts. Having established the theoretical framework to describe such an open system, we discuss its transport and thermodynamic properties. We review the evolution of the transport properties with the increase of the contact conductances from small values to values $sim e^2/pihbar$. In the discussion of transport, the emphasis is put on mesoscopic fluctuations and the Kondo effect in the conductance.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا