Do you want to publish a course? Click here

Aluminum arsenide cleaved-edge overgrown quantum wires

323   0   0.0 ( 0 )
 Added by Joel Moser
 Publication date 2005
  fields Physics
and research's language is English




Ask ChatGPT about the research

We report conductance measurements in quantum wires made of aluminum arsenide, a heavy-mass, multi-valley one-dimensional (1D) system. Zero-bias conductance steps are observed as the electron density in the wire is lowered, with additional steps observable upon applying a finite dc bias. We attribute these steps to depopulation of successive 1D subbands. The quantum conductance is substantially reduced with respect to the anticipated value for a spin- and valley-degenerate 1D system. This reduction is consistent with disorder-induced, intra-wire backscattering which suppresses the transmission of 1D modes. Calculations are presented to demonstrate the role of strain in the 1D states of this cleaved-edge structure.



rate research

Read More

150 - J. Moser , S. Roddaro , D. Schuh 2005
We report low-temperature differential conductance measurements in aluminum arsenide cleaved-edge overgrown quantum wires in the pinch-off regime. At zero source-drain bias we observe Coulomb blockade conductance resonances that become vanishingly small as the temperature is lowered below $250 {rm mK}$. We show that this behavior can be interpreted as a classical-to-stochastic Coulomb blockade cross-over in a series of asymmetric quantum dots, and offer a quantitative analysis of the temperature-dependence of the resonances lineshape. The conductance behavior at large source-drain bias is suggestive of the charge density wave conduction expected for a chain of quantum dots.
The electronic states in a corner-overgrown bent GaAs/AlGaAs quantum well heterostructure are studied with numerical Hartree simulations. Transmission electron microscope pictures of the junction justify the sharp-corner assumption. In a tilted magnetic field both facets of the bent quantum well are brought to a quantum Hall (QH) state, and the corner hosts an unconventional hybrid system of two coupled counter-propagating quantum Hall edges and an additional one-dimensional accumulation wire. A subsystems model is introduced, whereby the total hybrid dispersion and wavefunctions are explained in terms of the constituent QH edge- and accumulation wire-subsystem dispersions and wavefunctions. At low magnetic fields, orthonormal basis wavefunctions of the hybrid system can be accurately estimated by projecting out the lowest bound state of the accumulation wire from the edge state wavefunctions. At high magnetic fields, the coupling between the three subsystems increases as a function of the applied magnetic field, in contrast to coplanar barrier-junctions of QH systems, leading to large anticrossing gaps between the subsystem dispersions. These results are discussed in terms of previously reported experimental data on bent quantum Hall systems.
Undoped GaAs/AlGaAs heterostructures have been used to fabricate quantum wires in which the average impurity separation is greater than the device size. We compare the behavior of the Zero-Bias Anomaly against predictions from Kondo and spin polarization models. Both theories display shortcomings, the most dramatic of which are the linear electron-density dependence of the Zero-Bias Anomaly spin-splitting at fixed magnetic field B and the suppression of the Zeeman effect at pinch-off.
We demonstrate the emergence of the quantum Hall (QH) hierarchy in a 2D model of coupled quantum wires in a perpendicular magnetic field. At commensurate values of the magnetic field, the system can develop instabilities to appropriate inter-wire electron hopping processes that drive the system into a variety of QH states. Some of the QH states are not included in the Haldane-Halperin hierarchy. In addition, we find operators allowed at any field that lead to novel crystals of Laughlin quasiparticles. We demonstrate that any QH state is the groundstate of a Hamiltonian that we explicitly construct.
136 - J.H. Jefferson , A. Ramsak , 2005
A weakly bound electron in a semiconductor quantum wire is shown to become entangled with an itinerant electron via the coulomb interaction. The degree of entanglement and its variation with energy of the injected electron, may be tuned by choice of spin and initial momentum. Full entanglement is achieved close to energies where there are spin-dependent resonances. Possible realisations of related device structures are discussed.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا