No Arabic abstract
The conductance through a quantum wire of cylindrical cross section and a weak bulge is solved exactly for two electrons within the Landauer-Buettiker formalism. We show that this open quantum dot exhibits spin-dependent Coulomb blockade resonances resulting in two anomalous structure on the rising edge to the first conductance plateau, one near 0.25(2e^2/h), related to a singlet resonance, and one near 0.7(2e^2/h), related to a triplet resonance. These resonances are generic and robust, occurring for other types of quantum wire and surviving to temperatures of a few degrees.
We review the quantum interference effects in a system of interacting electrons confined to a quantum dot. The review starts with a description of an isolated quantum dot. We discuss the status of the Random Matrix theory (RMT) of the one-electron states in the dot, present the universal form of the interaction Hamiltonian compatible with the RMT, and derive the leading corrections to the universal interaction Hamiltonian. Next, we discuss a theoretical description of a dot connected to leads via point contacts. Having established the theoretical framework to describe such an open system, we discuss its transport and thermodynamic properties. We review the evolution of the transport properties with the increase of the contact conductances from small values to values $sim e^2/pihbar$. In the discussion of transport, the emphasis is put on mesoscopic fluctuations and the Kondo effect in the conductance.
We report low-temperature differential conductance measurements in aluminum arsenide cleaved-edge overgrown quantum wires in the pinch-off regime. At zero source-drain bias we observe Coulomb blockade conductance resonances that become vanishingly small as the temperature is lowered below $250 {rm mK}$. We show that this behavior can be interpreted as a classical-to-stochastic Coulomb blockade cross-over in a series of asymmetric quantum dots, and offer a quantitative analysis of the temperature-dependence of the resonances lineshape. The conductance behavior at large source-drain bias is suggestive of the charge density wave conduction expected for a chain of quantum dots.
We report the observation of Coulomb blockade in a quantum dot contacted by two quantum point contacts each with a single fully-transmitting mode, a system previously thought to be well described without invoking Coulomb interactions. At temperatures below 50 mK we observe a periodic oscillation in the conductance of the dot with gate voltage that corresponds to a residual quantization of charge. From the temperature and magnetic field dependence, we infer the oscillations are Mesoscopic Coulomb Blockade, a type of Coulomb blockade caused by electron interference in an otherwise open system.
Correlated states emerge in low-dimensional systems owing to enhanced Coulomb interactions. Elucidating these states requires atomic scale characterization and delicate control capabilities. In this study, spectroscopic imaging-scanning tunneling microscopy was employed to investigate the correlated states residing in the one-dimensional electrons of the monolayer and bilayer MoSe2 mirror twin boundary (MTB). The Coulomb energies, determined by the wire length, drive the MTB into two types of ground states with distinct respective out-of-phase and in-phase charge orders. The two ground states can be reversibly converted through a metastable zero-energy state with in situ voltage pulses, which tunes the electron filling of the MTB via a polaronic process, as substantiated by first-principles calculations. Our modified Hubbard model reveals the ground states as correlated insulators from an on-site U-originated Coulomb interaction, dubbed Hubbard-type Coulomb blockade effect. Our work sets a foundation for understanding correlated physics in complex systems and for tailoring quantum states for nano-electronics applications.
We have fabricated and measured superconducting single-electron transistors with Al leads and Nb islands. At bias voltages below the gap of Nb we observe clear signatures of resonant tunneling of Cooper pairs, and of Coulomb blockade of the subgap currents due to linewidth broadening of the energy levels in the superconducting density of states of Nb. The experimental results are in good agreement with numerical simulations.