High-quality and impurity-free magnetite surfaces with (sqrt2xsqrt2)R45o reconstruction have been obtained for the Fe3O4(001) epitaxial films deposited on Fe(001). Based on atomically resolved STM images for both negative and positive sample polarity and Density Functional Theory calculations, a model of the magnetite (001) surface terminated with Fe ions forming dimers on the reconstructed (sqrt2xsqrt2)R45o octahedral iron layer is proposed.
We use density-functional theory to study the structure of AlSb(001) and GaSb(001) surfaces. Based on a variety of reconstruction models, we construct surface stability diagrams for AlSb and GaSb under different growth conditions. For AlSb(001), the predictions are in excellent agreement with experimentally observed reconstructions. For GaSb(001), we show that previously proposed model accounts for the experimentally observed reconstructions under Ga-rich growth conditions, but fails to explain the experimental observations under Sb-rich conditions. We propose a new model that has a substantially lower surface energy than all (nx5)-like reconstructions proposed previously and that, in addition, leads to a simulated STM image in better agreement with experiment than existing models. However, this new model has higher surface energy than some of (4x3)-like reconstructions, models with periodicity that has not been observed. Hence we conclude that the experimentally observed (1x5) and (2x5) structures on GaSb(001) are kinetically limited rather than at the ground state.
The interaction of CO with the Fe3O4(001)-(rt2xrt2)R45{deg} surface was studied using temperature programmed desorption (TPD), scanning tunneling microscopy (STM) and x-ray photoelectron spectroscopy (XPS), the latter both under ultrahigh vacuum (UHV) conditions and in CO pressures up to 1 mbar. In general, the CO-Fe3O4 interaction is found to be weak. The strongest adsorption occurs at surface defects, leading to small TPD peaks at 115 K, 130 K and 190 K. Desorption from the regular surface occurs in two distinct regimes. For coverages up to 2 CO molecules per (rt2xrt2)R45{deg} unit cell, the desorption maximum shows a large shift with increasing coverage, from initially 105 K to 70 K. For coverages between 2 and 4 molecules per (rt2xrt2)R45{deg} unit cell, a much sharper desorption feature emerges at 50 K. Thermodynamic analysis of the TPD data suggests a phase transition from a dilute 2D gas into an ordered overlayer with CO molecules bound to surface Fe3+ sites. XPS data acquired at 45 K in UHV are consistent with physisorption. Some carbon-containing species are observed in the near-ambient-pressure XPS experiments at room temperature, but are attributed to contamination and/or reaction with CO with water from the residual gas. No evidence was found for surface reduction or carburization by CO molecules.
The phase immiscibility and the excellent matching between Ag(001) and Fe(001) unit cells (mismatch 0.8 %) make Fe/Ag growth attractive in the field of low dimensionality magnetic systems. Intermixing could be drastically limited at deposition temperatures as low as 140-150 K. The film structural evolution induced by post-growth annealing presents many interesting aspects involving activated atomic exchange processes and affecting magnetic properties. Previous experiments, of He and low energy ion scattering on films deposited at 150 K, indicated the formation of a segregated Ag layer upon annealing at 550 K. Higher temperatures led to the embedding of Fe into the Ag matrix. In those experiments, information on sub-surface layers was attained by techniques mainly sensitive to the topmost layer. Here, systematic PED measurements, providing chemical selectivity and structural information for a depth of several layers, have been accompanied with a few XRD rod scans, yielding a better sensitivity to the buried interface and to the film long range order. The results of this paper allow a comparison with recent models enlightening the dissolution paths of an ultra thin metal film into a different metal, when both subsurface migration of the deposit and phase separation between substrate and deposit are favoured. The occurrence of a surfactant-like stage, in which a single layer of Ag covers the Fe film is demonstrated for films of 4-6 ML heated at 500-550 K. Evidence of a stage characterized by the formation of two Ag capping layers is also reported. As the annealing temperature was increased beyond 700 K, the surface layers closely resembled the structure of bare Ag(001) with the residual presence of subsurface Fe aggregates.
Crystalline Fe3O4/NiO bilayers were grown on MgO(001) substrates using reactive molecular beam epitaxy to investigate their structural properties and their morphology. The film thickness either of the Fe3O4 film or of the NiO film has been varied to shed light on the relaxation of the bilayer system. The surface properties as studied by x-ray photo electron spectroscopy and low energy electron diffraction show clear evidence of stoichiometric well-ordered film surfaces. Based on the kinematic approach x-ray diffraction experiments were completely analyzed. As a result the NiO films grow pseudomorphic in the investigated thickness range (up to 34nm) while the Fe3O4 films relax continuously up to the thickness of 50nm. Although all diffraction data show well developed Laue fringes pointing to oxide films of very homogeneous thickness, the Fe3O4-NiO interface roughens continuously up to 1nm root-mean-square roughness with increasing NiO film thickness while the Fe3O4 surface is very smooth independent on the Fe3O4 film thickness. Finally, the Fe3O4-NiO interface spacing is similar to the interlayer spacing of the oxide films while the NiO-MgO interface is expanded.
We study the underlying chemical, electronic and magnetic properties of a number of magnetite based thin films. The main focus is placed onto NiO/Fe$_3$O$_4$(001) bilayers grown on MgO(001) and Nb-SrTiO$_3$(001) substrates. We compare the results with those obtained on pure Fe$_3$O$_4$(001) thin films. It is found that the magnetite layers are oxidized and Fe$^{3+}$ dominates at the surfaces due to maghemite ($gamma$-Fe$_2$O$_3$) formation, which decreases with increasing magnetite layer thickness. From a layer thickness of around 20 nm on the cationic distribution is close to that of stoichiometric Fe$_3$O$_4$. At the interface between NiO and Fe$_3$O$_4$ we find the Ni to be in a divalent valence state, with unambiguous spectral features in the Ni 2p core level x-ray photoelectron spectra typical for NiO. The formation of a significant NiFe$_2$O$_4$ interlayer can be excluded by means of XMCD. Magneto optical Kerr effect measurements reveal significant higher coercive fields compared to magnetite thin films grown on MgO(001), and a 45$^{circ}$ rotated magnetic easy axis. We discuss the spin magnetic moments of the magnetite layers and find that the moment increases with increasing thin film thickness. At low thickness the NiO/Fe$_3$O$_4$ films grown on Nb-SrTiO$_3$ exhibits a significantly decreased spin magnetic moments. A thickness of 20 nm or above leads to spin magnetic moments close to that of bulk magnetite.