Do you want to publish a course? Click here

How ripples turn into dots: modeling ion-beam erosion under oblique incidence

80   0   0.0 ( 0 )
 Added by Sebastian Vogel
 Publication date 2005
  fields Physics
and research's language is English




Ask ChatGPT about the research

Pattern formation on semiconductor surfaces induced by low energetic ion-beam erosion under normal and oblique incidence is theoretically investigated using a continuum model in form of a stochastic, nonlocal, anisotropic Kuramoto-Sivashinsky equation. Depending on the size of the parameters this model exhibits hexagonally ordered dot, ripple, less regular and even rather smooth patterns. We investigate the transitional behavior between such states and suggest how transitions can be experimentally detected.



rate research

Read More

We implement substrate rotation in a 2+1 dimensional solid-on-solid model of ion beam sputtering of solid surfaces. With this extension of the model, we study the effect of concurrent rotation, as the surface is sputtered, on possible topographic regions of surface patterns. In particular we perform a detailed numerical analysis of the time evolution of dots obtained from our Monte Carlo simulations at off-normal-incidence sputter erosion. We found the same power-law scaling exponents of the dot characteristics for two different sets of ion-material combinations, without and with substrate rotation.
We study solid surface morphology created by off-normal ion-beam sputtering with an atomistic, solid-on-solid model of sputter erosion. With respect to an earlier version of the model, we extend this model with the inclusion of lateral erosion. Using the 2-dimensional structure factor, we found an upper bound $musimeq 2$, in the lateral straggle $mu$, for clear ripple formation. Above this upper bound, for longitudinal straggle $sigmagtrsim 1.7$, we found the possibility of dot formation (without sample rotation). Moreover, a temporal crossover from a hole topography to ripple topography with the same value of collision cascade parameters was found. Finally, a scaling analysis of the roughness, using the consecutive gradient approach, yields the growth exponents $beta=0.33$ and 0.67 for two different topographic regimes.
Intrinsic ripples with various configurations and sizes were reported to affect the physical and chemical properties of 2D materials. By performing molecular dynamics simulations and theoretical analysis, we use two geometric models of the ripple shape to explore numerically the distribution of ripples in graphene membrane. We focus on the ratio of ripple height to its diameter (t/D) which was recently shown to be the most relevant for chemical activity of graphene membranes. Our result demonstrates that the ripple density decreases as the coefficient t/D increases, in a qualitative agreement with the Boltzmann distribution derived analytically from the bending energy of the membrane. Our theoretical study provides also specific quantitative information on the ripple distribution in graphene and gives new insights applicable to other 2D materials.
181 - H. Ruhl , Y. Sentoku , K. Mima 1998
Oblique incidence of a $p$-polarized laser beam on a fully ionized plasma with a low density plasma corona is investigated numerically by Particle-In-Cell and Vlasov simulations in two dimensions. A single narrow self-focused current jet of energetic electrons is observed to be projected into the corona nearly normal to the target. Magnetic fields enhance the penetration depth of the electrons into the corona. A scaling law for the angle of the ejected electrons with incident laser intensity is given.
Ultra-thin optical structures, known as metasurfaces, have shown promising light controlling capability at the nanoscale. In this paper, we study their particular case, a periodic array of high-refractive-index nanoparticles with electric and magnetic resonances. The main result of the work is a numerical demonstration that the lattice effect in the periodic arrangement of nanoparticles changes the resonance position even if the resonances are above the diffraction wavelength (Rayleigh anomaly). We show that the disk resonance changes can be achieved not only by varying periods of the array under normal light incidence but also by changing the incident angle.
comments
Fetching comments Fetching comments
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا