Do you want to publish a course? Click here

Collimated electron jets by intense laser beam-plasma surface interaction under oblique incidence

182   0   0.0 ( 0 )
 Added by Hartmut Ruhl
 Publication date 1998
  fields Physics
and research's language is English




Ask ChatGPT about the research

Oblique incidence of a $p$-polarized laser beam on a fully ionized plasma with a low density plasma corona is investigated numerically by Particle-In-Cell and Vlasov simulations in two dimensions. A single narrow self-focused current jet of energetic electrons is observed to be projected into the corona nearly normal to the target. Magnetic fields enhance the penetration depth of the electrons into the corona. A scaling law for the angle of the ejected electrons with incident laser intensity is given.



rate research

Read More

432 - T. V. Liseykina , D. Bauer 2012
We study the ionization dynamics in intense laser-droplet interaction using three-dimensional, relativistic particle-in-cell simulations. Of particular interest is the laser intensity and frequency regime for which initially transparent, wavelength-sized targets are not homogeneously ionized. Instead, the charge distribution changes both in space and in time on a sub-cycle scale. One may call this the extreme nonlinear Mie-optics regime. We find that - despite the fact that the plasma created at the droplet surface is overdense - oscillating electric fields may penetrate into the droplet under a certain angle, ionize, and propagate in the just generated plasma. This effect can be attributed to the local field enhancements at the droplet surface predicted by standard Mie theory. The penetration of the fields into the droplet leads to the formation of a highly inhomogeneous charge density distribution in the droplet interior, concentrated mostly in the polarization plane. We present a self-similar, exponential fit of the fractional ionization degree which depends only on a dimensionless combination of electric field amplitude, droplet radius, and plasma frequency with only a weak dependence on the laser frequency in the overdense regime.
Laser-plasma technology promises a drastic reduction of the size of high energy electron accelerators. It could make free electron lasers available to a broad scientific community, and push further the limits of electron accelerators for high energy physics. Furthermore the unique femtosecond nature of the source makes it a promising tool for the study of ultra-fast phenomena. However, applications are hindered by the lack of suitable lens to transport this kind of high-current electron beams, mainly due to their divergence. Here we show that this issue can be solved by using a laser-plasma lens, in which the field gradients are five order of magnitude larger than in conventional optics. We demonstrate a reduction of the divergence by nearly a factor of three, which should allow for an efficient coupling of the beam with a conventional beam transport line.
Interaction of an intense electron beam with a finite-length, inhomogeneous plasma is investigated numerically. The plasma density profile is maximal in the middle and decays towards the plasma edges. Two regimes of the two-stream instability are observed. In one regime, the frequency of the instability is the plasma frequency at the density maximum and plasma waves are excited in the middle of the plasma. In the other regime, the frequency of the instability matches the local plasma frequency near the edges of the plasma and the intense plasma oscillations occur near plasma boundaries. The latter regime appears sporadically and only for strong electron beam currents. This instability generates copious amount of suprathermal electrons. The energy transfer to suprathermal electrons is the saturation mechanism of the instability.
119 - K. Jiang , C. T. Zhou , S. Z. Wu 2019
Imposing an external magnetic field in short-pulse intense laser-plasma interaction is of broad scientific interest in related plasma research areas. We propose a simple method using a virtual current layer by introducing an extra current density term to simulate the external magnetic field, and demonstrate it with three-dimensional particle-in-cell simulations. The field distribution and its evolution in sub-picosecond time scale are obtained. The magnetization process takes a much longer time than that of laser-plasma interaction due to plasma diamagnetism arising from collective response. The long-time evolution of magnetic diffusion and diamagnetic current can be predicted based on a simplified analytic model in combination with simulations.
Ion acceleration driven by superintense laser pulses is attracting an impressive and steadily increasing effort. Motivations can be found in the potential for a number of foreseen applications and in the perspective to investigate novel regimes as far as available laser intensities will be increasing. Experiments have demonstrated in a wide range of laser and target parameters the generation of multi-MeV proton and ion beams with unique properties such as ultrashort duration, high brilliance and low emittance. In this paper we give an overview of the state-of-the art of ion acceleration by laser pulses as well as an outlook on its future development and perspectives. We describe the main features observed in the experiments, the observed scaling with laser and plasma parameters and the main models used both to interpret experimental data and to suggest new research directions.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا