Do you want to publish a course? Click here

Numerical analysis of the quantum dots on off-normal incidence ion sputtered surfaces

75   0   0.0 ( 0 )
 Publication date 2006
  fields Physics
and research's language is English




Ask ChatGPT about the research

We implement substrate rotation in a 2+1 dimensional solid-on-solid model of ion beam sputtering of solid surfaces. With this extension of the model, we study the effect of concurrent rotation, as the surface is sputtered, on possible topographic regions of surface patterns. In particular we perform a detailed numerical analysis of the time evolution of dots obtained from our Monte Carlo simulations at off-normal-incidence sputter erosion. We found the same power-law scaling exponents of the dot characteristics for two different sets of ion-material combinations, without and with substrate rotation.



rate research

Read More

Pattern formation on semiconductor surfaces induced by low energetic ion-beam erosion under normal and oblique incidence is theoretically investigated using a continuum model in form of a stochastic, nonlocal, anisotropic Kuramoto-Sivashinsky equation. Depending on the size of the parameters this model exhibits hexagonally ordered dot, ripple, less regular and even rather smooth patterns. We investigate the transitional behavior between such states and suggest how transitions can be experimentally detected.
Epitaxial self-assembled quantum dots (SAQDs) are of both technological and fundamental interest, but their reliable manufacture still presents a technical challenge. To better understand the formation, morphology and ordering of epitaxial self-assembled quantum dots (SAQDs), it is essential to have an accurate model that can aid further experiments and predict the trends in SAQD formation. SAQDs form because of the destabilizing effect of elastic mismatch strain, but most analytic models and some numerical models of SAQD formation either assume an elastically homogeneous anisotropic film-substrate system or assume an elastically heterogeneous isotropic system. In this work, we perform the full film-substrate elastic calculation. Then we incorporate the elasticity calculation into a stochastic linear growth model. We find that using homogeneous elasticity can cause errors in the elastic energy density as large as 26%, and for typical modeling parameters lead to errors of about 11% in the estimated value of average dot spacing. We also quantify the effect of elastic heterogeneity on the order estimates of SAQDs and confirm previous finding on the possibility of order enhancement by growing a film near the critical film height.
The morphology evolution of Si (100) surfaces under 1200 eV Ar+ ion bombardment at normal incidence with and without metal incorporation is presented. The formation of nanodot patterns is observed only when the stationary Fe concentration in the surface is above 8x10^14 cm^-2. This is interpreted in terms of an additional surface instability due to non-uniform sputtering in connection with metal enrichment at the nanodots. At low metal concentration smoothing dominates and pattern formation is thus inhibited. The transition from a k^-2 to a k^-4 behavior in the asymptotic power spectral density function supports the conclusion that ballistic smoothing and ion-enhanced viscous flow are the two dominant mechanisms of surface relaxation.
We study solid surface morphology created by off-normal ion-beam sputtering with an atomistic, solid-on-solid model of sputter erosion. With respect to an earlier version of the model, we extend this model with the inclusion of lateral erosion. Using the 2-dimensional structure factor, we found an upper bound $musimeq 2$, in the lateral straggle $mu$, for clear ripple formation. Above this upper bound, for longitudinal straggle $sigmagtrsim 1.7$, we found the possibility of dot formation (without sample rotation). Moreover, a temporal crossover from a hole topography to ripple topography with the same value of collision cascade parameters was found. Finally, a scaling analysis of the roughness, using the consecutive gradient approach, yields the growth exponents $beta=0.33$ and 0.67 for two different topographic regimes.
We investigate the effects of roughness and fractality on the normal contact stiffness of rough surfaces. Samples of isotropically roughened aluminium surfaces are considered. The roughness and fractal dimension were altered through blasting using different sized particles. Subsequently, surface mechanical attrition treatment (SMAT) was applied to the surfaces in order to modify the surface at the microscale. The surface topology was characterised by interferometry based profilometry. The normal contact stiffness was measured through nanoindentation with a flat tip utilising the partial unloading method. We focus on establishing the relationships between surface stiffness and roughness, combined with the effects of fractal dimension. The experimental results, for a wide range of surfaces, showed that the measured contact stiffness depended very closely on surfaces root mean squared (RMS) slope and their fractal dimension, with correlation coefficients of around 90%, whilst a relatively weak correlation coefficient of 57% was found between the contact stiffness and RMS roughness.
comments
Fetching comments Fetching comments
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا