Do you want to publish a course? Click here

Anomalous vibrational effects in non-magnetic and magnetic Heusler alloys

92   0   0.0 ( 0 )
 Added by Alexey Zayak
 Publication date 2005
  fields Physics
and research's language is English




Ask ChatGPT about the research

First-principles calculations are used in order to investigate phonon anomalies in non-magnetic and magnetic Heusler alloys. Phonon dispersions for several systems in their cubic L2$mathrm{_1}$ structure were obtained along the [110] direction. We consider compounds which exhibit phonon instabilities and compare them with their stable counterparts. The analysis of the electronic structure allows us to identify the characteristic features leading to structural instabilities. The phonon dispersions of the unstable compounds show that, while the acoustic modes tend to soften, the optical modes disperse in a way which is significantly different from that of the stable structures. The optical modes that appear to disperse at anomalously low frequencies are Raman active, which is considered an indication of a stronger polarizability of the unstable systems. We show that phonon instability of the TA$_{2}$ mode in Heusler alloys is driven by interaction(repulsion) with the low energy optical vibrations. The optical modes show their unusual behavior due to covalent interactions which are additional bonding features incommensurate with the dominating metallicity in Heusler compounds.



rate research

Read More

Weyl fermions have recently been observed in several time-reversal-invariant semimetals and photonics materials with broken inversion symmetry. These systems are expected to have exotic transport properties such as the chiral anomaly. However, most discovered Weyl materials possess a substantial number of Weyl nodes close to the Fermi level that give rise to complicated transport properties. Here we predict, for the first time, a new family of Weyl systems defined by broken time-reversal symmetry, namely, Co-based magnetic Heusler materials XCo2Z (X = IVB or VB; Z = IVA or IIIA). To search for Weyl fermions in the centrosymmetric magnetic systems, we recall an easy and practical inversion invariant, which has been calculated to be -1, guaranteeing the existence of an odd number of pairs of Weyl fermions. These materials exhibit, when alloyed, only two Weyl nodes at the Fermi level - the minimum number possible in a condensed matter system. The Weyl nodes are protected by the rotational symmetry along the magnetic axis and separated by a large distance (of order 2$pi$) in the Brillouin zone. The corresponding Fermi arcs have been calculated as well. This discovery provides a realistic and promising platform for manipulating and studying the magnetic Weyl physics in experiments.
Density-functional studies of the electronic structures and exchange interaction parameters have been performed for a series of ferromagnetic full Heusler alloys of general formula Co$_2$MnZ (Z = Ga, Si, Ge, Sn), Rh$_2$MnZ (Z = Ge, Sn, Pb), Ni$_2$MnSn, Cu$_2$MnSn and Pd$_2$MnSn, and the connection between the electronic spectra and the magnetic interactions have been studied. Different mechanisms contributing to the exchange coupling are revealed. The band dependence of the exchange parameters, their dependence on volume and valence electron concentration have been thoroughly analyzed within the Green function technique.
Ni$_{50}$Mn$_{34}$In$_{16}$ undergoes a martensitic transformation around 250 K and exhibits a field induced reverse martensitic transformation and substantial magnetocaloric effects. We substitute small amounts Ga for In, which are isoelectronic, to carry these technically important properties to close to room temperature by shifting the martensitic transformation temperature.
The addition of transition metals (TM) to III-V semiconductors radically changes their electronic, magnetic and structural properties. In contrast to the conventional semiconductor alloys, the lattice parameter in magnetic semiconductor alloys, including the ones with diluted concentration (the diluted magnetic semiconductors - DMS), cannot be determined uniquely from the composition. By using first-principles calculations, we find a direct correlation between the magnetic moment and the anion-TM bond lengths. We derive a simple formula that determines the lattice parameter of a particular magnetic semiconductor by considering both the composition and magnetic moment. The formula makes accurate predictions of the lattice parameter behavior of AlMnN, AlCrN, GaMnN, GaCrN, GaCrAs and GaMnAs alloys. This new dependence can explain some of the hitherto puzzling experimentally observed anomalies, as well as, stimulate other kind of theoretical and experimental investigations.
We report on measurements of the adiabatic second order elastic constants of the off-stoichiometric Ni$_{54}$Mn$_{23}$Al$_{23}$ single crystalline Heusler alloy. The variation in the temperature dependence of the elastic constants has been investigated across the magnetic transition and over a broad temperature range. Anomalies in the temperature behaviour of the elastic constants have been found in the vicinity of the magnetic phase transition. Measurements under applied magnetic field, both isothermal and variable temperature, show that the value of the elastic constants depends on magnetic order, thus giving evidence for magnetoelastic coupling in this alloy system.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا