Do you want to publish a course? Click here

Temperature and magnetic field dependences of the elastic constants of Ni-Mn-Al magnetic Heusler alloys

67   0   0.0 ( 0 )
 Added by Xavier Moya
 Publication date 2006
  fields Physics
and research's language is English




Ask ChatGPT about the research

We report on measurements of the adiabatic second order elastic constants of the off-stoichiometric Ni$_{54}$Mn$_{23}$Al$_{23}$ single crystalline Heusler alloy. The variation in the temperature dependence of the elastic constants has been investigated across the magnetic transition and over a broad temperature range. Anomalies in the temperature behaviour of the elastic constants have been found in the vicinity of the magnetic phase transition. Measurements under applied magnetic field, both isothermal and variable temperature, show that the value of the elastic constants depends on magnetic order, thus giving evidence for magnetoelastic coupling in this alloy system.



rate research

Read More

Inelastic and elastic neutron scattering have been used to study a single crystal of the Ni$_{54}$Mn$_{23}$Al$_{23}$ Heusler alloy over a broad temperature range. The paper reports the first experimental determination of the low-lying phonon dispersion curves for this alloy system. We find that the frequencies of the TA$_2$ modes are relatively low. This branch exhibits an anomaly (dip) at a wave number $xi_{0} ={1/3}approx 0.33$, which softens with decreasing temperature. Associated with this anomalous dip at $xi_{0}$, an elastic central peak scattering is also present. We have also observed satellites due to the magnetic ordering.
Laser ablation of Al-Ni alloys and Al films on Ni substrates has been studied by molecular dynamics simulations (MD). The MD method was combined with a two-temperature model to describe the interaction between the laser beam, the electrons and the atoms. The challenge for alloys and mixtures is to find the electronic parameters: electron heat conductivity, electron heat capacity and electron-phonon coupling parameter. The challenge for layered systems is to run simulations of an inhomogeneous system which requires modification of the simulation code. Ablation and laser-induced melting was studied for several Al-Ni compounds. At low fluences above the threshold ordinary ablation behavior occurred while at high fluences the ablation mechanism changed in Al$_3$Ni and AlNi$_3$ from phase explosion to vaporization. Al films of various thicknesses on a Ni substrate have also been simulated. Above threshold, 8 nm Al films are ablated as a whole while 24 nm Al films are only partially removed. Below threshold, alloying with a mixture gradient has been observed in the thin layer system.
On the basis of the density functional calculations in combination with the supercell approach, we report on a complete study of the influences of atomic arrangement and Ni substitution for Al on the ground state structural and magnetic properties for Fe$_2$Ni$_{1+x}$Al$_{1-x}$ Heusler alloys. We discuss systematically the competition between five cubic Heusler-type structures formed by shuffles of Fe and Ni atoms to reveal routes for improving the phase stability and magnetic properties, in particular magnetocrystalline anisotropy~(MAE). We predict that in case of Fe$_2$NiAl the ground state cubic structure with alternated layers of Fe and Ni possesses the highest uniaxial MAE which twice larger than that for the tetragonal L1$_0$ FeNi. The successive Ni doping at Al sublattice leads to a change of ground state structure and to reduce of the MAE. In addition, the phase stability against the decomposition into the stable systems at finite-temperatures is discussed. All~Ni-rich Fe$_2$Ni$_{1+x}$Al$_{1-x}$ are turned to be decomposed into a dual-phase consisting of Fe$_2$NiAl and FeNi.
The static and dynamic magnetic properties of tetragonally distorted Mn--Ga based alloys were investigated. Static properties are determined in magnetic fields up to 6.5~T using SQUID magnetometry. For the pure Mn$_{1.6}$Ga film, the saturation magnetisation is 0.36~MA/m and the coercivity is 0.29~T. Partial substitution of Mn by Co results in Mn$_{2.6}$Co$_{0.3}$Ga$_{1.1}$. The saturation magnetisation of those films drops to 0.2~MA/m and the coercivity is increased to 1~T. Time-resolved magneto-optical Kerr effect (TR-MOKE) is used to probe the high-frequency dynamics of Mn--Ga. The ferromagnetic resonance frequency extrapolated to zero-field is found to be 125~GHz with a Gilbert damping, $alpha$, of 0.019. The anisotropy field is determined from both SQUID and TR-MOKE to be 4.5~T, corresponding to an effective anisotropy density of 0.81~MJ/m$^3$. Given the large anisotropy field of the Mn$_{2.6}$Co$_{0.3}$Ga$_{1.1}$ film, pulsed magnetic fields up to 60~T are used to determine the field strength required to saturate the film in the plane. For this, the extraordinary Hall effect was employed as a probe of the local magnetisation. By integrating the reconstructed in--plane magnetisation curve, the effective anisotropy energy density for Mn$_{2.6}$Co$_{0.3}$Ga$_{1.1}$ is determined to be 1.23~MJ/m$^3$.
First-principles calculations are used in order to investigate phonon anomalies in non-magnetic and magnetic Heusler alloys. Phonon dispersions for several systems in their cubic L2$mathrm{_1}$ structure were obtained along the [110] direction. We consider compounds which exhibit phonon instabilities and compare them with their stable counterparts. The analysis of the electronic structure allows us to identify the characteristic features leading to structural instabilities. The phonon dispersions of the unstable compounds show that, while the acoustic modes tend to soften, the optical modes disperse in a way which is significantly different from that of the stable structures. The optical modes that appear to disperse at anomalously low frequencies are Raman active, which is considered an indication of a stronger polarizability of the unstable systems. We show that phonon instability of the TA$_{2}$ mode in Heusler alloys is driven by interaction(repulsion) with the low energy optical vibrations. The optical modes show their unusual behavior due to covalent interactions which are additional bonding features incommensurate with the dominating metallicity in Heusler compounds.
comments
Fetching comments Fetching comments
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا