No Arabic abstract
The addition of transition metals (TM) to III-V semiconductors radically changes their electronic, magnetic and structural properties. In contrast to the conventional semiconductor alloys, the lattice parameter in magnetic semiconductor alloys, including the ones with diluted concentration (the diluted magnetic semiconductors - DMS), cannot be determined uniquely from the composition. By using first-principles calculations, we find a direct correlation between the magnetic moment and the anion-TM bond lengths. We derive a simple formula that determines the lattice parameter of a particular magnetic semiconductor by considering both the composition and magnetic moment. The formula makes accurate predictions of the lattice parameter behavior of AlMnN, AlCrN, GaMnN, GaCrN, GaCrAs and GaMnAs alloys. This new dependence can explain some of the hitherto puzzling experimentally observed anomalies, as well as, stimulate other kind of theoretical and experimental investigations.
First-principles calculations are used in order to investigate phonon anomalies in non-magnetic and magnetic Heusler alloys. Phonon dispersions for several systems in their cubic L2$mathrm{_1}$ structure were obtained along the [110] direction. We consider compounds which exhibit phonon instabilities and compare them with their stable counterparts. The analysis of the electronic structure allows us to identify the characteristic features leading to structural instabilities. The phonon dispersions of the unstable compounds show that, while the acoustic modes tend to soften, the optical modes disperse in a way which is significantly different from that of the stable structures. The optical modes that appear to disperse at anomalously low frequencies are Raman active, which is considered an indication of a stronger polarizability of the unstable systems. We show that phonon instability of the TA$_{2}$ mode in Heusler alloys is driven by interaction(repulsion) with the low energy optical vibrations. The optical modes show their unusual behavior due to covalent interactions which are additional bonding features incommensurate with the dominating metallicity in Heusler compounds.
Alternating layers of granular Iron (Fe) and Titanium dioxide (TiO$_{2-delta}$) were deposited on (100) Lanthanum aluminate (LaAlO$_3$) substrates in low oxygen chamber pressure using a controlled pulsed laser ablation deposition technique. The total thickness of the film was about 200 nm. The films show ferromagnetic behavior for temperatures ranging from 4 to $400 ^oK$. The layered film structure was characterized as p-type magnetic semiconductor at $300 ^oK$ with a carrier density of the order of $10^{20} /cm^3$. The undoped pure TiO$_{2-delta}$ film was characterized as an n-type magnetic semiconductor. The hole carriers were excited at the interface between the granular Fe and TiO$_{2-delta}$ layers similar to holes excited in the metal/n-type semiconductor interface commonly observed in Metal-Oxide-Semiconductor (MOS) devices. The holes at the interface were polarized in an applied magnetic field raising the possibility that these granular MOS structures can be utilized for practical spintronic device applications.
In this paper we report successful synthesis and magnetic properties of (Ca,Na)(Zn,Mn)2Sb2 as a new ferromagnetic dilute magnetic semiconductor (DMS). In this DMS material the concentration of magnetic moments can be controlled independently from the concentration of electric charge carriers that are required for mediating magnetic interactions between these moments. This feature allows us to separately investigate the effect of carriers and of spins on the ferromagnetic properties of this new DMS alloy, and particularly of the critical ferromagnetic behavior. We use modified Arrott plot technique to establish critical exponents b, g, and d of this alloy. We find that at low Mn concentrations (< 10 at.%), it is governed by short-range 3D-Ising behavior, with experimental values of b, g, and d very close to theoretical 3D-Ising values of 0.325, 1.24, and 4.815. However, as the Mn concentration increases, this DMS material exhibits a mixed-phase behavior, with g retaining its 3D-Ising characteristics, but b crossing over to longer-range mean-field behavior.
Spintronics refers commonly to phenomena in which the spin of electrons in a solid state environment plays the determining role. In a more narrow sense spintronics is an emerging research field of electronics: spintronics devices are based on a spin control of electronics, or on an electrical and optical control of spin or magnetism. This review presents selected themes of semiconductor spintronics, introducing important concepts in spin transport, spin injection, Silsbee-Johnson spin-charge coupling, and spindependent tunneling, as well as spin relaxation and spin dynamics. The most fundamental spin-dependent nteraction in nonmagnetic semiconductors is spin-orbit coupling. Depending on the crystal symmetries of the material, as well as on the structural properties of semiconductor based heterostructures, the spin-orbit coupling takes on different functional forms, giving a nice playground of effective spin-orbit Hamiltonians. The effective Hamiltonians for the most relevant classes of materials and heterostructures are derived here from realistic electronic band structure descriptions. Most semiconductor device systems are still theoretical concepts, waiting for experimental demonstrations. A review of selected proposed, and a few demonstrated devices is presented, with detailed description of two important classes: magnetic resonant tunnel structures and bipolar magnetic diodes and transistors. In most cases the presentation is of tutorial style, introducing the essential theoretical formalism at an accessible level, with case-study-like illustrations of actual experimental results, as well as with brief reviews of relevant recent achievements in the field.
The evolution of the optical phonons in layered semiconductor alloys SnSe1-xSx is studied as a function of the composition by using polarized Raman spectroscopy with six different excitation wavelengths (784.8, 632.8, 532, 514.5, 488, and 441.6 nm). The polarization dependences of the phonon modes are compared with transmission electron diffraction measurements to determine the crystallographic orientation of the samples. Some of the Raman modes show significant variation in their polarization behavior depending on the excitation wavelengths. It is established that the maximum intensity direction of the Ag2 mode of SnSe1-xSx (0<=x<=1) does not depend on the excitation wavelength and corresponds to the armchair direction. It is additionally found that the lower-frequency Raman modes of Ag1, Ag2 and B3g1 in the alloys show the typical one-mode behavior of optical phonons, whereas the higher-frequency modes of B3g2, Ag3 and Ag4 show two-mode behavior.