We study the relaxational dynamics of flux lines in high-temperature superconductors with random pinning using Langevin dynamics. At high temperatures the dynamics is stationary and the fluctuation dissipation theorem (FDT) holds. At low temperatures the system does not equilibrate with its thermal bath: a simple multiplicative aging is found, the FDT is violated and we found that an effective temperature characterizes the slow modes of the system. The generic features of the evolution -- scaling laws -- are dictated by the ones of the single elastic line in a random environment.
Dynamics of vortices in strongly type-II superconductors with strong disorder is investigated within the frustrated three-dimensional XY model. For two typical models in [Phys. Rev. Lett. {bf 91}, 077002 (2003)] and [Phys. Rev. B {bf 68}, 220502(R) (2003)], a strong evidence for the finite temperature vortex glass transition in the unscreened limit is provided by performing large-scale dynamical simulations. The obtained correlation length exponents and the dynamic exponents in both models are different from each other and from those in the three-dimensional gauge glass model. In addition, a genuine continuous depinning transition is observed at zero temperature for both models. A scaling analysis for the thermal rounding of the depinning transition shows a non-Arrhenius type creep motion in the vortex glass phase, contrarily to the recent studies..
In this work we study numerically the out of equilibrium dynamics of the Hopfield model for associative memory inside its spin-glass phase. Besides its interest as a neural network model it can also be considered as a prototype of fully connected magnetic systems with randomness and frustration. By adjusting the ratio between the number of stored configurations $p$ and the total number of neurons $N$ one can control the phase-space structure, whose complexity can vary between the simple mean-field ferromagnet (when $p=1$) and that of the Sherrington-Kirkpatrick spin-glass model (for a properly taken limit of an infinite number of patterns). In particular, little attention has been devoted to the spin-glass phase of this model. In this work we analyse the two-time auto-correlation function, the decay of the magnetization and the distribution of overlaps between states. The results show that within the spin-glass phase of the model the dynamics exhibits ageing phenomena and presents features that suggest a non trivial breaking of replica symmetry.
We show that in type-II superconductors a magnetic field applied transversely to correlated columnar disorder, drives a phase transition to a distinct smectic vortex glass (SmVG) state. SmVG is characterized by an infinitely anisotropic electrical transport, resistive (dissipationless) for current perpendicular to (along) columnar defects. Its positional order is also quite unusual, long-ranged with true Bragg peaks along columnar defects and logarithmically rough vortex lattice distortions with quasi-Bragg peaks transverse to columnar defects. For low temperatures and sufficiently weak columnar-only disorder, SmVG is a true topologically-ordered Bragg glass, characterized by a vanishing dislocation density. At sufficiently long scales the residual ever-present point disorder converts this state to a more standard, but highly anisotropic vortex glass.
Large-scale simulations have been performed on the current-driven two-dimensional XY gauge glass model with resistively-shunted-junction dynamics. It is observed that the linear resistivity at low temperatures tends to zero, providing strong evidence of glass transition at finite temperature. Dynamic scaling analysis demonstrates that perfect collapses of current-voltage data can be achieved with the glass transition temperature $T_{g}=0.22$, the correlation length critical exponent $ u =1.8$, and the dynamic critical exponent $ z=2.0$. A genuine continuous depinning transition is found at zero temperature. For creeping at low temperatures, critical exponents are evaluated and a non-Arrhenius creep motion is observed in the glass phase.
The thermodynamic $H-T$ phase diagram of Bi$_2$Sr$_2$CaCu$_2$O$_8$ was mapped by measuring local emph{equilibrium} magnetization $M(H,T)$ in presence of vortex `shaking. Two equally sharp first-order magnetization steps are revealed in a single temperature sweep, manifesting a liquid-solid-liquid sequence. In addition, a second-order glass transition line is revealed by a sharp break in the equilibrium $M(T)$ slope. The first- and second-order lines intersect at intermediate temperatures, suggesting the existence of four phases: Bragg glass and vortex crystal at low fields, glass and liquid at higher fields.