No Arabic abstract
In this work we study numerically the out of equilibrium dynamics of the Hopfield model for associative memory inside its spin-glass phase. Besides its interest as a neural network model it can also be considered as a prototype of fully connected magnetic systems with randomness and frustration. By adjusting the ratio between the number of stored configurations $p$ and the total number of neurons $N$ one can control the phase-space structure, whose complexity can vary between the simple mean-field ferromagnet (when $p=1$) and that of the Sherrington-Kirkpatrick spin-glass model (for a properly taken limit of an infinite number of patterns). In particular, little attention has been devoted to the spin-glass phase of this model. In this work we analyse the two-time auto-correlation function, the decay of the magnetization and the distribution of overlaps between states. The results show that within the spin-glass phase of the model the dynamics exhibits ageing phenomena and presents features that suggest a non trivial breaking of replica symmetry.
In this work it is studied the Hopfield fermionic spin glass model which allows interpolating from trivial randomness to a highly frustrated regime. Therefore, it is possible to investigate whether or not frustration is an essential ingredient which would allow this magnetic disordered model to present naturally inverse freezing by comparing the two limits, trivial randomness and highly frustrated regime and how different levels of frustration could affect such unconventional phase transition. The problem is expressed in the path integral formalism where the spin operators are represented by bilinear combinations of Grassmann variables. The Grand Canonical Potential is obtained within the static approximation and one-step replica symmetry breaking scheme. As a result, phase diagrams temperature {it versus} the chemical potential are obtained for several levels of frustration. Particularly, when the level of frustration is diminished, the reentrance related to the inverse freezing is gradually suppressed.
We find a dynamic effect in the non-equilibrium dynamics of a spin glass that closely parallels equilibrium temperature chaos. This effect, that we name dynamic temperature chaos, is spatially heterogeneous to a large degree. The key controlling quantity is the time-growing spin-glass coherence length. Our detailed characterization of dynamic temperature chaos paves the way for the analysis of recent and forthcoming experiments. This work has been made possible thanks to the most massive simulation to date of non-equilibrium dynamics, carried out on the Janus~II custom-built supercomputer.
We study the relaxational dynamics of flux lines in high-temperature superconductors with random pinning using Langevin dynamics. At high temperatures the dynamics is stationary and the fluctuation dissipation theorem (FDT) holds. At low temperatures the system does not equilibrate with its thermal bath: a simple multiplicative aging is found, the FDT is violated and we found that an effective temperature characterizes the slow modes of the system. The generic features of the evolution -- scaling laws -- are dictated by the ones of the single elastic line in a random environment.
We consider the spatial correlation function of the two-dimensional Ising spin glass under out-equilibrium conditions. We pay special attention to the scaling limit reached upon approaching zero temperature. The field-theory of a non-interacting field makes a surprisingly good job at describing the spatial shape of the correlation function of the out-equilibrium Edwards-Anderson Ising model in two dimensions.
We study the phase transition of the $pm J$ Heisenberg model in three dimensions. Using a dynamical simulation method that removes a drift of the system, the existence of the spin-glass (SG) phase at low temperatures is suggested. The transition temperature is estimated to be $T_{rm SG} sim 0.18J$ from both equilibrium and off-equilibrium Monte-Carlo simulations. Our result contradicts the chirality mechanism of the phase transition reported recently by Kawamura which claims that it is not the spins but the chiralities of the spins that are ordered in Heisenberg SG systems.