Do you want to publish a course? Click here

Equilibrium First-Order Melting and Second-Order Glass Transitions of the Vortex Matter in Bi$_2$Sr$_2$CaCu$_2$O$_8$

93   0   0.0 ( 0 )
 Added by Haim Beidenkopf
 Publication date 2005
  fields Physics
and research's language is English




Ask ChatGPT about the research

The thermodynamic $H-T$ phase diagram of Bi$_2$Sr$_2$CaCu$_2$O$_8$ was mapped by measuring local emph{equilibrium} magnetization $M(H,T)$ in presence of vortex `shaking. Two equally sharp first-order magnetization steps are revealed in a single temperature sweep, manifesting a liquid-solid-liquid sequence. In addition, a second-order glass transition line is revealed by a sharp break in the equilibrium $M(T)$ slope. The first- and second-order lines intersect at intermediate temperatures, suggesting the existence of four phases: Bragg glass and vortex crystal at low fields, glass and liquid at higher fields.



rate research

Read More

We study the oxygen doping dependence of the equilibrium first-order melting and second-order glass transitions of vortices in Bi$_2$Sr$_2$CaCu$_2$O$_{8+delta}$. Doping affects both anisotropy and disorder. Anisotropy scaling is shown to collapse the melting lines only where thermal fluctuations are dominant. Yet, in the region where disorder breaks that scaling, the glass lines are still collapsed. A quantitative fit to melting and replica symmetry breaking lines of a 2D Ginzburg-Landau model further reveals that disorder amplitude weakens with doping, but to a lesser degree than thermal fluctuations, enhancing the relative role of disorder.
Langevin dynamics simulations of the vortex matter in the highly-anisotropic high-temperature superconductor Bi$_2$Sr$_2$CaCu$_2$O$_8$ were performed. We introduced point defects as a smoothened distribution of a random potential. Both the electromagnetic and Josephson interactions among pancake vortices were included. A special shaking and annealing process was introduced to let the system approach the equilibrium configuration. We are able to see the inverse melting transition from the Bragg-glass to the amorphous vortex glass state, in agreement with recent experiments.
The persistence of the first-order transition line in the phase diagram of mesoscopic Bi$_{2}$Sr$_{2}$CaCu$_{2}$O$_{8}$ vortex matter is detected down to a system size of less than hundred vortices. Precise and highly-sensitive to bulk currents AC magnetization techniques proved to be mandatory in order to obtain this information. The location of the vortex matter first-order transition lines are not altered by decreasing the sample size down to 20 $mu$m. Nevertheless, the onset of irreversible magnetization is affected by increasing the sample surface-to-volume ratio producing a noticeable enlargement of the irreversible vortex region above the second-peak transition.
159 - S. Ooi , T. Shibauchi , K. Itaka 2000
Vortex phase diagram under tilted fields from the $c$ axis in Bi${}_2$Sr${}_2$CaCu${}_2$O${}_{8+y}$ is studied by local magnetization hysteresis measurements using Hall probes. When the field is applied at large angles from the $c$ axis, an anomaly ($H_p^ast$) other than the well-known peak effect ($H_p$) are found at fields below $H_p$. The angular dependence of the field $H_p^ast$ is nonmonotonic and clearly different from that of $H_p$ and depends on the oxygen content of the crystal. The results suggest existence of a vortex matter transition under tilted fields. Possible mechanisms of the transition are discussed.
Low temperature thermal conductivity, $kappa$, of optimally-doped Bi2212 was studied before and after the introduction of point defects by electron irradiation. The amplitude of the linear component of $kappa$ remains unchanged, confirming the universal nature of heat transport by zero-energy quasiparticles. The induced decrease in the absolute value of $kappa$ at finite temperatures allows us to resolve a nonuniversal term in $kappa$ due to conduction by finite-energy quasiparticles. The magnitude of this term provides an estimate of the quasiparticle lifetime at subkelvin temperatures.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا