Do you want to publish a course? Click here

Smectic vortex glass

137   0   0.0 ( 0 )
 Added by Leo Radzihovsky
 Publication date 2021
  fields Physics
and research's language is English




Ask ChatGPT about the research

We show that in type-II superconductors a magnetic field applied transversely to correlated columnar disorder, drives a phase transition to a distinct smectic vortex glass (SmVG) state. SmVG is characterized by an infinitely anisotropic electrical transport, resistive (dissipationless) for current perpendicular to (along) columnar defects. Its positional order is also quite unusual, long-ranged with true Bragg peaks along columnar defects and logarithmically rough vortex lattice distortions with quasi-Bragg peaks transverse to columnar defects. For low temperatures and sufficiently weak columnar-only disorder, SmVG is a true topologically-ordered Bragg glass, characterized by a vanishing dislocation density. At sufficiently long scales the residual ever-present point disorder converts this state to a more standard, but highly anisotropic vortex glass.



rate research

Read More

257 - T. Nattermann , S. Scheidl 2000
A review is given on the theory of vortex-glass phases in impure type-II superconductors in an external field. We begin with a brief discussion of the effects of thermal fluctuations on the spontaneously broken U(1) and translation symmetries, on the global phase diagram and on the critical behaviour. Introducing disorder we restrict ourselves to the experimentally most relevant case of weak uncorrelated randomness which is known to destroy the long-ranged translational order of the Abrikosov lattice in three dimensions. Elucidating possible residual glassy ordered phases, we distinguish betwee positional and phase-coherent vortex glasses. The discussion of elastic vortex glasses, in two and three dimensions occupy the main part of our review. In particular, in three dimensions there exists an elastic vortex-glass phase which still shows quasi-long-range translational order: the `Bragg glass. It is shown that this phase is stable with respect to the formation of dislocations for intermediate fields. Preliminary results suggest that the Bragg-glass phase may not show phase-coherent vortex-glass order. The latter is expected to occur in systems with weak disorder only in higher dimensions. We further demonstrate that the linear resistivity vanishes in the vortex-glass phase. The vortex-glass transition is studied in detail for a superconducting film in a parallel field. Finally, we review some recent developments concerning driven vortex-line lattices moving in a random environment.
We study the disordered, multi-spiral solutions of two-dimensional homogeneous oscillatory media for parameter values at which the single spiral/vortex solution is fully stable. In the framework of the complex Ginzburg-Landau (CGLE) equation, we show that these states, heretofore believed to be static, actually evolve on ultra-slow timescales. This is achieved via a reduction of the CGLE to the evolution of the sole vortex position and phase coordinates. This true defect-mediated turbulence occurs in two distinct phases, a vortex liquid characterized by normal diffusion of individual spirals, and a slowly relaxing, intermittent, ``vortex glass.
Understanding the physics of glass formation remains one of the major unsolved challenges of condensed matter science. As a material solidifies into a glass, it exhibits a spectacular slowdown of the dynamics upon cooling or compression, but at the same time undergoes only minute structural changes. Among the numerous theories put forward to rationalize this complex behavior, Mode-Coupling Theory (MCT) stands out as the only framework that provides a fully first-principles-based description of glass phenomenology. This review outlines the key physical ingredients of MCT, its predictions, successes, and failures, as well as recent improvements of the theory. We also discuss the extension and application of MCT to the emerging field of non-equilibrium active soft matter
We numerically study the relaxation dynamics of several glass-forming models to their inherent structures, following quenches from equilibrium configurations sampled across a wide range of temperatures. In a mean-field Mari-Kurchan model, we find that relaxation changes from a power-law to an exponential decay below a well-defined temperature, consistent with recent findings in mean-field $p$-spin models. By contrast, for finite-dimensional systems, the relaxation is always algebraic, with a non-trivial universal exponent at high temperatures crossing over to a harmonic value at low temperatures. We demonstrate that this apparent evolution is controlled by a temperature-dependent population of localised excitations. Our work unifies several recent lines of studies aiming at a detailed characterization of the complex potential energy landscape of glass-formers.
We investigate the effect of correlated disorder on Majorana zero modes (MZMs) bound to magnetic vortices in two-dimensional topological superconductors. By starting from a lattice model of interacting fermions with a $p_x pm i p_y$ superconducting ground state in the disorder-free limit, we use perturbation theory to describe the enhancement of the Majorana localization length at weak disorder and a self-consistent numerical solution to understand the breakdown of the MZMs at strong disorder. We find that correlated disorder has a much stronger effect on the MZMs than uncorrelated disorder and that it is most detrimental if the disorder correlation length $ell$ is on the same order as the superconducting coherence length $xi$. In contrast, MZMs can survive stronger disorder for $ell ll xi$ as random variations cancel each other within the length scale of $xi$, while an MZM may survive up to very strong disorder for $ell gg xi$ if it is located in a favorable domain of the given disorder realization.
comments
Fetching comments Fetching comments
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا